/* * first_mesh.h * * * Created by Brian Patenaude on 12/08/2008. * Copyright 2008 University of Oxford. All rights reserved. * */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "first_mesh.h" using namespace std; using namespace NEWIMAGE; namespace FIRST_LIB{ first_mesh::first_mesh(){ } first_mesh::~first_mesh(){ } void first_mesh::getBounds(const vector & m, int *bounds, const float & xdim, const float & ydim, const float & zdim) { float xmin=1000,xmax=-1000,ymin=1000,ymax=-1000,zmin=1000,zmax=-1000; for (vector::const_iterator i=m.begin();i!=m.end();i+=3) { if ( *i < xmin) xmin=*i; if ( *i > xmax) xmax=*i; if ( *(i+1) < ymin) ymin=*(i+1); if ( *(i+1) > ymax) ymax=*(i+1); if ( *(i+2) < zmin) zmin=*(i+2); if ( *(i+2) > zmax) zmax=*(i+2); } *bounds=static_cast(floor(xmin/xdim)-1); *(bounds+1)=static_cast(ceil(xmax/xdim)+1); *(bounds+2)=static_cast(floor(ymin/ydim)-1); *(bounds+3)=static_cast(ceil(ymax/ydim)+1); *(bounds+4)=static_cast(floor(zmin/zdim)-1); *(bounds+5)=static_cast(ceil(zmax/zdim)+1); } void first_mesh::draw_segment(::volume& image, const float & p1x,const float & p1y,const float & p1z, const float & p2x,const float & p2y,const float & p2z, int label) { double xdim = (double) image.xdim(); double ydim = (double) image.ydim(); double zdim = (double) image.zdim(); //in new version of bet2 double mininc = min(xdim,min(ydim,zdim)) * .25; float nx = p1x - p2x; float ny = p1y - p2y; float nz = p1z - p2z; double d = sqrt(nx*nx+ny*ny+nz*nz); nx/=d; ny/=d; nz/=d; for (double i=0; i<=d; i+=mininc) image(static_cast(floor((p2x+i*nx)/xdim +.5)),static_cast(floor((p2y+i*ny)/ydim +.5)),static_cast(floor((p2z+i*nz)/zdim +.5))) = label; } volume first_mesh::draw_mesh(const volume & image, const vector & pts, const vector< vector > & triangles, int label) { volume imout; copyconvert(image,imout); imout=0; double xdim = (double) image.xdim(); double ydim = (double) image.ydim(); double zdim = (double) image.zdim(); //in new version of bet2 double mininc = min(xdim,min(ydim,zdim)) * 0.5; for (vector< vector >::const_iterator i = triangles.begin(); i!=triangles.end(); i++) { float px1= pts.at(i->at(1)*3); float py1= pts.at(i->at(1)*3+1); float pz1= pts.at(i->at(1)*3+2); float vx=pts.at(i->at(0)*3) - px1; float vy=pts.at(i->at(0)*3+1) - py1; float vz=pts.at(i->at(0)*3+2) - pz1; float px2=pts.at(i->at(2)*3); float py2=pts.at(i->at(2)*3+1); float pz2=pts.at(i->at(2)*3+2); float d=sqrt(vx*vx+vy*vy+vz*vz); vx/=d; vy/=d; vz/=d; for (float j=0; j<=d ; j+=mininc) draw_segment(imout, px1+j*vx,py1+j*vy,pz1+j*vz,px2,py2,pz2,label+100); } return imout; } volume first_mesh::make_mask_from_mesh(const volume & image, const vector & m, const vector< vector > & triangles, const int & label, const int * bounds) { volume mask; copyconvert(image,mask); int boundsNew[6];// = *bounds; for (int i=0;i<6;i++) boundsNew[i]=bounds[i]; mask = 0; mask = draw_mesh(mask, m, triangles, label); volume otl=mask; vector currentX,currentY,currentZ; if (boundsNew[0]<0) boundsNew[0]=0; if (boundsNew[2]<0) boundsNew[2]=0; if (boundsNew[4]<0) boundsNew[4]=0; if (boundsNew[1]>=image.xsize()-1) boundsNew[1]=image.xsize()-1; if (boundsNew[3]>=image.ysize()-1) boundsNew[3]=image.ysize()-1; if (boundsNew[5]>=image.zsize()-1) boundsNew[5]=image.zsize()-1; float start_x=boundsNew[0]-2; float start_y=boundsNew[2]-2; float start_z=boundsNew[4]-2; if (boundsNew[0]<2) start_x=0; if (boundsNew[2]<2) start_y=0; if (boundsNew[4]<2) start_z=0; mask.value(start_x,start_y,start_z) = label; currentX.push_back(start_x); currentY.push_back(start_y); currentZ.push_back(start_z); while (!currentX.empty()) { int x, y, z; x=static_cast(currentX.back()); y=static_cast(currentY.back()); z=static_cast(currentZ.back()); currentX.pop_back(); currentY.pop_back(); currentZ.pop_back(); if (boundsNew[0]<=x-1 && mask.value(x-1, y, z)==0) { mask.value(x-1, y, z) = label; currentX.push_back(x-1); currentY.push_back(y); currentZ.push_back(z); } if (boundsNew[2]<=y-1 && mask.value(x, y-1, z)==0) { mask.value(x, y-1, z) = label; currentX.push_back(x); currentY.push_back(y-1); currentZ.push_back(z); } if (boundsNew[4]<=z-1 && mask.value(x, y, z-1)==0) { mask.value(x, y, z-1) = label; currentX.push_back(x); currentY.push_back(y); currentZ.push_back(z-1); } if (boundsNew[1]>=x+1 && mask.value(x+1, y, z)==0) { mask.value(x+1, y, z) = label; currentX.push_back(x+1); currentY.push_back(y); currentZ.push_back(z); } if (boundsNew[3]>=y+1 && mask.value(x, y+1, z)==0) { mask.value(x, y+1, z) = label; currentX.push_back(x); currentY.push_back(y+1); currentZ.push_back(z); } if (boundsNew[5]>=z+1 && mask.value(x, y, z+1)==0) { mask.value(x, y, z+1) = label; currentX.push_back(x); currentY.push_back(y); currentZ.push_back(z+1); } } for (int i=boundsNew[0];i void first_mesh::normal(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ) { vx.clear(); vy.clear(); vz.clear(); //calculate the normals for each triangle then references for (typename vector< vector >::const_iterator i=localTri.begin();i!=localTri.end();i++) { float nx=0,ny=0,nz=0; float vx1,vy1,vz1,vx2,vy2,vz2; for (typename vector::const_iterator j=i->begin();j!=i->end();j++) { vx1=pts.at(cells.at(*j).at(2)*3)-pts.at(cells.at(*j).at(0)*3); vx2=pts.at(cells.at(*j).at(1)*3)-pts.at(cells.at(*j).at(0)*3); vy1=pts.at(cells.at(*j).at(2)*3+1)-pts.at(cells.at(*j).at(0)*3+1); vy2=pts.at(cells.at(*j).at(1)*3+1)-pts.at(cells.at(*j).at(0)*3+1); vz1=pts.at(cells.at(*j).at(2)*3+2)-pts.at(cells.at(*j).at(0)*3+2); vz2=pts.at(cells.at(*j).at(1)*3+2)-pts.at(cells.at(*j).at(0)*3+2); float nxt=(vy1*vz2-vz1*vy2); float nyt=(vz1*vx2-vx1*vz2); float nzt=(vx1*vy2-vy1*vx2); nx+=nxt; ny+=nyt; nz+=nzt; } float d=sqrt(nx*nx+ny*ny+nz*nz); vx.push_back(nx/d); vy.push_back(ny/d); vz.push_back(nz/d); } } template vector< vector > first_mesh::findNeighbours(const vector< vector > & triangles, const unsigned int & N) { vector< vector > neighbours; for (unsigned int i=0; i pt_neigh; for (typename vector< vector >::const_iterator tri_i=triangles.begin(); tri_i!=triangles.end(); tri_i++) for ( typename vector ::const_iterator vert_i= tri_i->begin(); vert_i!=tri_i->end(); vert_i++) if ( static_cast(*vert_i) == i )//if point belongs to triangle add neigbours { for ( typename vector ::const_iterator vert_ii= tri_i->begin(); vert_ii!=tri_i->end(); vert_ii++) if ( static_cast(*vert_ii) != i ) { bool found=false; for ( typename vector::iterator temp_i=pt_neigh.begin(); temp_i!=pt_neigh.end();temp_i++) if ( (*vert_ii) == (*temp_i) ) found=true; if (!found) pt_neigh.push_back(*vert_ii); } break; } neighbours.push_back(pt_neigh); } return neighbours; } template vector< vector > first_mesh::findNeighbourTriangles(const vector< vector > & cells, const unsigned int & N) { vector< vector > neighbours; for (unsigned int i=0; i tri_neigh; int count=0; for (typename vector< vector >::const_iterator tri_i=cells.begin(); tri_i!=cells.end(); tri_i++,count++) for ( typename vector ::const_iterator tri_j= tri_i->begin(); tri_j!=tri_i->end(); tri_j++) if ( static_cast(*tri_j) == i )//if point belongs to triangle add neigbours { tri_neigh.push_back(count); break; } neighbours.push_back(tri_neigh); } return neighbours; } template void first_mesh::medium_neighbours(const vector & pts, const vector< vector > & neighbours, const vector< vector > & cells,\ vector & vx, vector & vy, vector & vz ) { vx.clear(); vy.clear(); vz.clear(); //calculate the normals for each triangle then references for ( typename vector< vector >::const_iterator i=neighbours.begin();i!=neighbours.end();i++) { float nx=0,ny=0,nz=0; for (typename vector::const_iterator j=i->begin();j!=i->end();j++) { nx+=pts.at( (*j)*3 ); ny+=pts.at( (*j)*3 + 1); nz+=pts.at( (*j)*3 + 2); } vx.push_back(nx/i->size()); vy.push_back(ny/i->size()); vz.push_back(nz/i->size()); } } template void first_mesh::maxTriangle(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ) { vx.clear(); vy.clear(); vz.clear(); typename vector::const_iterator pts_i = pts.begin(); for (typename vector< vector >::const_iterator i=localTri.begin();i!=localTri.end();i++ , pts_i+=3) { float vx1,vy1,vz1,vx2,vy2,vz2; float max_area=0, va_x=0, va_y=0, va_z=0; for (typename vector::const_iterator j=i->begin();j!=i->end();j++) { vx1=pts.at(cells.at(*j).at(2)*3)-pts.at(cells.at(*j).at(0)*3); vx2=pts.at(cells.at(*j).at(1)*3)-pts.at(cells.at(*j).at(0)*3); vy1=pts.at(cells.at(*j).at(2)*3+1)-pts.at(cells.at(*j).at(0)*3+1); vy2=pts.at(cells.at(*j).at(1)*3+1)-pts.at(cells.at(*j).at(0)*3+1); vz1=pts.at(cells.at(*j).at(2)*3+2)-pts.at(cells.at(*j).at(0)*3+2); vz2=pts.at(cells.at(*j).at(1)*3+2)-pts.at(cells.at(*j).at(0)*3+2); float nxt=(vy1*vz2-vz1*vy2); float nyt=(vz1*vx2-vx1*vz2); float nzt=(vx1*vy2-vy1*vx2); float area=0.5* sqrt(nxt*nxt+nyt*nyt+nzt*nzt); //find bisecting vector //cout<<"area "< max_area ) { va_x=( pts.at(cells.at(*j).at(0)*3) + pts.at(cells.at(*j).at(1)*3) + pts.at(cells.at(*j).at(2)*3 ) ) / 3 - *pts_i ; va_y=( pts.at(cells.at(*j).at(0)*3 + 1 ) + pts.at(cells.at(*j).at(1)*3 + 1 ) + pts.at(cells.at(*j).at(2)*3 + 1 ) ) / 3 - *(pts_i+1); va_z=( pts.at(cells.at(*j).at(0)*3 + 2 ) + pts.at(cells.at(*j).at(1)*3 + 2 ) + pts.at(cells.at(*j).at(2)*3 + 2 ) ) / 3 - *(pts_i+2); max_area=area; // cout<<"MAX AREA "< bool first_mesh::triangle_intersection(const T* V10, const T* V11, const T* V12, const T* V20, const T* V21, const T* V22 ) {//this is the Moller algorithm for fast traingle intersection //calculate triangle plane 2 //cout<<"test triangles"<( vec_sub(V21,V20), vec_sub(V22,V20) ); T d2 = -dot_prod(N2,V20); // T testV[]={1,2,3}; // T testV2[]= {4,5,6}; // T* test=cross_prod(testV,testV2); //T* N2=cross_prod(testV,testV2); //cout<<"test "<=0) && (dist11>=0) && (dist12>=0)) || ((dist10<=0) && (dist11<=0) && (dist12<=0)) ) { delete N2; return false;//not all points are on same side of plan } // }else if (( dist10 == dist11 ) && (dist11 == dist12) && ( dist12 == 0 )) //test for coplanar // { // delete N2; // return false; // }else if ( (dist10==0) || (dist11==0) || (dist12==0) ) { delete N2; return false; }else{ //calculate intersection line T* N1 = cross_prod( vec_sub(V11,V10), vec_sub(V12,V10) ); T d1 = -dot_prod(N1,V10); T dist20=dot_prod(N1,V20)+d1; T dist21=dot_prod(N1,V21)+d1; T dist22=dot_prod(N1,V22)+d1; // if ( dist20 == dist21 == dist22 == 0 ) // { // cout<<"dist1 "<=0) && (dist21>=0) && (dist22>=0)) || ((dist20<=0) && (dist21<=0) && (dist22<=0)) ) { delete N2; delete N1; return false;//not all points are on same side of plan } //claulcate line in=tersection (without intercept) T* D = cross_prod(N1,N2); //calculate max axis to project onto /* short max_axis = 0; if (abs(D[1])>abs(D[0])) max_axis=1; else if (abs(D[2])>abs(D[max_axis])) max_axis=2; delete N1; delete N2; delete D; T p10 = V10[max_axis]; T p11 = V11[max_axis]; T p12 = V12[max_axis]; T p20 = V20[max_axis]; T p21 = V21[max_axis]; T p22 = V22[max_axis]; */ T p10 = dot_prod(D,V10);//[max_axis]; T p11 = dot_prod(D,V11); T p12 =dot_prod(D,V12); T p20 =dot_prod(D,V20); T p21 =dot_prod(D,V21); T p22 = dot_prod(D,V22); if (abs(dist10)<1e-4) dist10=0; if (abs(dist11)<1e-4) dist11=0; if (abs(dist12)<1e-4) dist12=0; if (abs(dist20)<1e-4) dist20=0; if (abs(dist21)<1e-4) dist21=0; if (abs(dist22)<1e-4) dist22=0; // cout<<"dist1 "<=0) && (dist11>=0)) || ((dist10<=0) && (dist11<=0)) ) { t11= p10 - (p10 - p12)*(dist10/(dist10 - dist12)); t12= p11 - (p11 - p12)*(dist11/(dist11 - dist12)); }else if ( ((dist10>=0) && (dist12>=0)) || ((dist10<=0) && (dist12<=0)) ) { t11= p10 - (p10 - p11)*(dist10/(dist10 - dist11)); t12= p12 - (p12 - p11)*(dist12/(dist12 - dist11)); }else { t11= p11 - (p11 - p10)*(dist11/(dist11 - dist10)); t12= p12 - (p12 - p10)*(dist12/(dist12 - dist10)); } //get triangle 2 interval if ( ((dist20>=0) && (dist21>=0)) || ((dist20<=0) && (dist21<=0)) ) { t21= p20 - (p20 - p22)*(dist20/(dist20 - dist22)); t22= p21 - (p21 - p22)*(dist21/(dist21 - dist22)); }else if ( ((dist20>=0) && (dist22>=0)) || ((dist20<=0) && (dist22<=0)) ) { t21= p20 - (p20 - p21)*(dist20/(dist20 - dist21)); t22= p22 - (p22 - p21)*(dist22/(dist22 - dist21)); }else { t21= p21 - (p21 - p20)*(dist21/(dist21 - dist20)); t22= p22 - (p22 - p20)*(dist22/(dist22 - dist20)); } // cout<=t11) && (t21>=t12) && (t22>=t11) && (t22>=t12)) ) return false; } return true; } template bool first_mesh::self_intersection_test(const vector< vector > & tri_cells, const vector & pts ) { vector pts_x, pts_y, pts_z; for (typename vector::const_iterator i=pts.begin();i!=pts.end();i+=3) { pts_x.push_back(*i); pts_y.push_back(*(i+1)); pts_z.push_back(*(i+2)); } typename vector< vector >::const_iterator start_j=tri_cells.begin()+1; T* V10 = new T[3]; T* V11 = new T[3]; T* V12 = new T[3]; T* V20 = new T[3]; T* V21 = new T[3]; T* V22 = new T[3]; for (typename vector< vector >::const_iterator i=tri_cells.begin(); i!=tri_cells.end() ;i++) { //for each triangle, compare against all others V10[0]=pts_x.at(i->at(0)); V10[1]=pts_y.at(i->at(0)); V10[2]=pts_z.at(i->at(0)); V11[0]=pts_x.at(i->at(1)); V11[1]=pts_y.at(i->at(1)); V11[2]=pts_z.at(i->at(1)); V12[0]=pts_x.at(i->at(2)); V12[1]=pts_y.at(i->at(2)); V12[2]=pts_z.at(i->at(2)); for (typename vector< vector >::const_iterator j=start_j; j!=tri_cells.end() ;j++) { V20[0]=pts_x.at(j->at(0)); V20[1]=pts_y.at(j->at(0)); V20[2]=pts_z.at(j->at(0)); V21[0]=pts_x.at(j->at(1)); V21[1]=pts_y.at(j->at(1)); V21[2]=pts_z.at(j->at(1)); V22[0]=pts_x.at(j->at(2)); V22[1]=pts_y.at(j->at(2)); V22[2]=pts_z.at(j->at(2)); //cout<<"tri "<(const vector & pts, const vector< vector > & localTri, \ const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::normal(const vector & pts, const vector< vector > & localTri, \ const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::normal(const vector & pts, const vector< vector > & localTri, \ const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::normal(const vector & pts, const vector< vector > & localTri, \ const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); //medium neighbours template void first_mesh::medium_neighbours(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,\ vector & vx, vector & vy, vector & vz ); template void first_mesh::medium_neighbours(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,\ vector & vx, vector & vy, vector & vz ); template void first_mesh::medium_neighbours(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,\ vector & vx, vector & vy, vector & vz ); template void first_mesh::medium_neighbours(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,\ vector & vx, vector & vy, vector & vz ); //find neighbours template vector< vector > first_mesh::findNeighbours(const vector< vector > & triangles, const unsigned int & N); template vector< vector > first_mesh::findNeighbours(const vector< vector > & triangles, const unsigned int & N); template vector< vector > first_mesh::findNeighbours(const vector< vector > & triangles, const unsigned int & N); template vector< vector > first_mesh::findNeighbourTriangles(const vector< vector > & triangles, const unsigned int & N); template vector< vector > first_mesh::findNeighbourTriangles(const vector< vector > & triangles, const unsigned int & N); template vector< vector > first_mesh::findNeighbourTriangles(const vector< vector > & triangles, const unsigned int & N); template void first_mesh::maxTriangle(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::maxTriangle(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::maxTriangle(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template void first_mesh::maxTriangle(const vector & pts, const vector< vector > & localTri, const vector< vector > & cells,vector & vx, vector & vy, vector & vz ); template bool first_mesh::self_intersection_test(const vector< vector > & tri_cells, const vector & pts ); template bool first_mesh::self_intersection_test(const vector< vector > & tri_cells, const vector & pts ); template bool first_mesh::self_intersection_test(const vector< vector > & tri_cells, const vector & pts ); template bool first_mesh::self_intersection_test(const vector< vector > & tri_cells, const vector & pts ); /* template short pointTest(const float & px_0, const float & py_0, const float & pz_0, const float & px_1, const float & py_1, const float & pz_1, \ const float & px_2, const float & py_2, const float & pz_2, const float & nx, const float & ny, const float & nz, \ float & p0_x, float & p0_y, float & p0_z, float & dx, float & dy, float & dz); template short pointTest(const double & px_0, const double & py_0, const double & pz_0, const double & px_1, const double & py_1, const double & pz_1, \ const double & px_2, const double & py_2, const double & pz_2, const double & nx, const double & ny, const double & nz,\ double & p0_x, double & p0_y, double & p0_z, double & dx, double & dy, double & dz); */ }