#!/usr/bin/python import sys from sys import argv from commands import getoutput from numpy import * def usage(): print "Usage: " + argv[0] + " " print " " print " First argument is the output matrix which will go from the input image to standard space," print " with the desired linear structure aligned with the y-axis in standard space" print " Second argument is the FLIRT transform from the input image to standard" print " Third argument is the input image (e.g., the .nii.gz file)" print " The remaining arguments are two coordinates in the input image, chosen along the" print " linear structure that is to be aligned with the y-axis" print " All coordinates are in voxel coordinates (in the input image)" print " If the input image is already in standard space then use $FSLDIR/etc/flirtsch/ident.mat" print " as the second argument but still use voxel coordinates (not MNI/mm coords)" print " You can use the output matrix from this script in a simple resampling call to flirt:" print " e.g. flirt -in input_image -ref standard_image -applyxfm -init outputfromhere.mat -out rotated_image" print " You can also use a higher resolution standard image as the -ref in the line above if you want better resolution" sys.exit(1) if len(argv) <= 9: usage() # Load in the necessary info a=loadtxt(argv[2]) alldims=getoutput("$FSLDIR/bin/fslsize "+argv[3]+" -s") listdims=alldims.split() dx=float(listdims[12]) dy=float(listdims[14]) dz=float(listdims[16]) #print [dx,dy,dz] x1=matrix([[dx*float(argv[4])],[dy*float(argv[5])],[dz*float(argv[6])],[1]]) x2=matrix([[dx*float(argv[7])],[dy*float(argv[8])],[dz*float(argv[9])],[1]]) # Calculate the desired rotation v=a*(x2-x1) # get rid of x-component as we are not interested in this vn=matrix([[v[1,0]],[v[2,0]]]) norm=sqrt(vn.T * vn) vn=vn/norm # deal with angles greater than 90 degrees (only aligning undirected lines) if vn[0,0]<0: vn=vn*-1.0 theta=arcsin(vn[1,0]) r=matrix([[1,0,0,0],[0,cos(theta),sin(theta),0],[0,-sin(theta),cos(theta),0],[0,0,0,1]]) newa=r*a # Fix the translation (keep COV in the same place) # The input image space COV is ... sx=float(listdims[2]) sy=float(listdims[4]) sz=float(listdims[6]) #print [sx,sy,sz] incov=matrix([[dx*sx/2.0],[dy*sy/2.0],[dz*sz/2.0],[1]]) # The standard image space *COV* (not origin) is ... stdcov=mat("91;109;91;1"); trans=stdcov-newa*incov newa[0:3,3]+=trans[0:3] # Save out the result savetxt(argv[1],newa,fmt='%14.10f')