// FNIRT - FMRIB's Non-linear Image Registration Tool // // fnirt.cpp // // Jesper Andersson, FMRIB Image Analysis Group // /* Copyright (C) 2012 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include #include #include #include #include #include "newmat.h" #include "newmatio.h" #ifndef EXPOSE_TREACHEROUS #define EXPOSE_TREACHEROUS // To allow us to use .set_sform etc #endif #include "newimage/newimageall.h" #include "miscmaths/miscmaths.h" #include "miscmaths/nonlin.h" #include "warpfns/warpfns.h" #include "basisfield/basisfield.h" #include "basisfield/splinefield.h" #include "basisfield/dctfield.h" #include "matching_points.h" #include "fnirt_costfunctions.h" #include "intensity_mappers.h" #include "fnirtfns.h" using namespace std; using namespace NEWMAT; using namespace NEWIMAGE; using namespace BASISFIELD; using namespace FNIRT; int main(int argc, char *argv[]) { // Parse command line and return object that we can // later ask what the user wants us to do. boost::shared_ptr clp; try { clp = parse_fnirt_command_line(argc,argv); } catch (const std::exception& error) { cerr << "Error occured when parsing the command line" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } // Read --ref and --in volumes boost::shared_ptr > ref(new volume); boost::shared_ptr > obj(new volume); try { read_volume(*ref,clp->Ref()); read_volume(*obj,clp->Obj()); } catch (const std::exception& error) { cerr << "Error occurred when reading --ref or --obj file" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } // Check for registration to self (sometimes done in TBSS) if (trying_to_register_to_self(clp->Ref(),*ref,clp->Obj(),*obj,clp->Affine())) { try { write_self_results(*clp,*ref); } catch(const std::exception& error) { cerr << "Error occurred when writing results of registration to self" << endl; cerr << "Exception thrown with message: " << error.what() << endl; } if (clp->Verbose()) cout << "Input to fnirt was two identical images. Result is unity transform." << endl; exit(EXIT_SUCCESS); // Sort of } // Prepare for fnirting boost::shared_ptr cf; boost::shared_ptr nlpar; double objmean = 0.0; try { // Create refmask as combination of explicit and implicit masks. boost::shared_ptr > refmask; if (clp->UseRefMask(1)) refmask = make_mask(clp->RefMask(),InclusiveMask,*ref,clp->UseImplicitRefMask(),clp->ImplicitRefValue()); else refmask = make_mask(clp->RefMask(),IgnoreMask,*ref,clp->UseImplicitRefMask(),clp->ImplicitRefValue()); // Normalise ref and obj global mean to 100 double refmean = spmlike_mean(*ref); objmean = spmlike_mean(*obj); (*ref) *= (100.0/refmean); (*obj) *= (100.0/objmean); // Create objmask as a combination of explicit and implicit masks. boost::shared_ptr > objmask; if (clp->UseObjMask(1)) objmask = make_mask(clp->ObjMask(),InclusiveMask,*obj,clp->UseImplicitObjMask(),clp->ImplicitObjValue()); else objmask = make_mask(clp->ObjMask(),IgnoreMask,*obj,clp->UseImplicitObjMask(),clp->ImplicitObjValue()); // Initialise the field that describes the warps. std::vector > field = init_warpfield(*clp); // Set up model for intensity mapping boost::shared_ptr mymapper = init_intensity_mapper(*clp); // Create cost-function object cf = boost::shared_ptr(new SSD_fnirt_CF(*ref,*obj,clp->Affine(),field,mymapper)); cf->SetVerbose(clp->Verbose()); cf->SetRegularisationModel(clp->RegularisationModel()); cf->SetLambda(clp->Lambda(1)); cf->SetLevel(1); cf->SetIntensityMappingFixed(!clp->EstimateIntensity(1)); cf->SetHessianPrecision(clp->HessianPrecision()); cf->SetInterpolationModel(clp->InterpolationModel()); if (clp->WeightLambdaBySSD()) cf->WeightLambdaBySSD(); if (clp->UseRefDeriv()) cf->UseRefDerivs(); if (clp->Debug()) cf->SetDebug(clp->Debug()); // Smooth and sub-sample cf->SmoothRef(clp->RefFWHM(1)); cf->SmoothObj(clp->ObjFWHM(1)); cf->SubsampleRef(clp->SubSampling(1)); // Set masks (if any) if (refmask) cf->SetRefMask(*refmask); if (objmask) cf->SetObjMask(*objmask); // Check if we should include point-lists in the warping if (clp->RefPointList().length()) { PointList rpl(clp->RefPointList(),clp->Ref()); rpl.SetAffine(clp->Affine().i()); PointList opl(clp->ObjPointList(),clp->Obj()); MatchingPoints mpl(rpl,opl); cf->SetMatchingPoints(mpl); cf->SetMatchingPointsLambda(clp->MatchingPointsLambda(1)); } // Initialise nonlin parameter object NEWMAT::ColumnVector spar = cf->Par(); // Start guesses for parameters nlpar = boost::shared_ptr(new NonlinParam(cf->NPar(),clp->MinimisationMethod(),spar)); set_nlpars(*nlpar); nlpar->SetMaxIter(clp->MaxIter(1)); } catch (const std::exception& error) { cerr << "Error occurred when preparing to fnirt" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } // And now find parameters for the first level of subsampling try { // MISCMATHS::NonlinOut status = nonlin(*nlpar,*cf); nonlin(*nlpar,*cf); if (!constrain_warpfield(*cf,*clp,5)) { // N.B. arbitrary number 5 std::pair range = cf->JacobianRange(); cout << "Warning, Jacobian not within prescribed range. Prescription is " << clp->JacLowerBound() << " -- " << clp->JacUpperBound(); cout << " and obtained range is " << range.first << " -- " << range.second << endl; } } catch (const std::exception& error) { cerr << "Error occured during estimation at first level of subsampling" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } // Loop over remaining levels of sub-sampling try { for (int ssl=2; ssl<=clp->NoLevels(); ssl++) { if (clp->Verbose()) cout << "***Going to next resolution level***" << endl; cf->SetLevel(ssl); // New mask use if (clp->UseRefMask(ssl) != clp->UseRefMask(ssl-1)) { boost::shared_ptr > refmask; if (clp->UseRefMask(ssl)) refmask = make_mask(clp->RefMask(),InclusiveMask,*ref,clp->UseImplicitRefMask(),clp->ImplicitRefValue()); else refmask = make_mask(clp->RefMask(),IgnoreMask,*ref,clp->UseImplicitRefMask(),clp->ImplicitRefValue()); if (refmask) cf->SetRefMask(*refmask); } if (clp->UseObjMask(ssl) != clp->UseObjMask(ssl-1)) { boost::shared_ptr > objmask; if (clp->UseObjMask(1)) objmask = make_mask(clp->ObjMask(),ExclusiveMask,*obj,clp->UseImplicitObjMask(),clp->ImplicitObjValue()); else objmask = make_mask(clp->ObjMask(),IgnoreMask,*obj,clp->UseImplicitObjMask(),clp->ImplicitObjValue()); if (objmask) cf->SetObjMask(*objmask); } // New smoothness if (clp->RefFWHM(ssl) != clp->RefFWHM(ssl-1)) cf->SmoothRef(clp->RefFWHM(ssl)); if (clp->ObjFWHM(ssl) != clp->ObjFWHM(ssl-1)) cf->SmoothObj(clp->ObjFWHM(ssl)); // New subsampling if (clp->Verbose()) cout << "Setting subsampling" << endl; if (clp->SubSampling(ssl) != clp->SubSampling(ssl-1)) cf->SubsampleRef(clp->SubSampling(ssl)); if (clp->Verbose()) cout << "Setting reg mode" << endl; cf->SetRegularisationModel(clp->RegularisationModel()); if (clp->Verbose()) cout << "Setting lambda" << endl; cf->SetLambda(clp->Lambda(ssl)); // New (possibly) lambda cf->SetMatchingPointsLambda(clp->MatchingPointsLambda(ssl)); cf->SetIntensityMappingFixed(!clp->EstimateIntensity(ssl)); // Splash out on brand new nonlin object nlpar = boost::shared_ptr(new NonlinParam(cf->NPar(),clp->MinimisationMethod(),cf->Par())); set_nlpars(*nlpar); nlpar->SetMaxIter(clp->MaxIter(ssl)); // MISCMATHS::NonlinOut status = nonlin(*nlpar,*cf); nonlin(*nlpar,*cf); if (!constrain_warpfield(*cf,*clp,10)) { // N.B. arbitrary number 10 std::pair range = cf->JacobianRange(); cout << "Warning, Jacobian not within prescribed range. Prescription is " << clp->JacLowerBound() << " -- " << clp->JacUpperBound(); cout << " and obtained range is " << range.first << " -- " << range.second << endl; } } // If we stopped short of full resolution, // up-sample field to full resolution. if (clp->SubSampling(clp->NoLevels()) > 1) cf->SubsampleRef(1); } catch (const std::exception& error) { cerr << "Error occured during estimation at subsampling level > 1" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } // Save everything we have been asked to save try { cf->SaveDefCoefs(clp->CoefFname()); // Coefficients if (clp->FieldFname().length()) cf->SaveDefFields(clp->FieldFname()); // Field if (clp->JacFname().length()) cf->SaveJacobian(clp->JacFname()); // Jacobian if (clp->RefOutFname().length()) cf->SaveScaledRef(clp->RefOutFname()); // Intensity modulated ref scan // Intensity-mapping if (clp->IntensityMappingFname().length()) cf->SaveIntensityMapping(clp->IntensityMappingFname()); // Warped object image if (clp->ObjOutFname().length()) { if (clp->ObjFWHM(clp->NoLevels())!=0.0) cf->SmoothObj(0.0); // "Un-smooth" it cf->IntensityScaleObj(objmean/100.0); // "Un-scale" it cf->SaveRobj(clp->ObjOutFname()); } } catch(const std::exception& error) { cerr << "Error occured while writing output from fnirt" << endl; cerr << "Exception thrown with message: " << error.what() << endl; exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); // R.I.P. }