/* Copyright (C) 2012 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include #include extern "C" { #include } using namespace fslvtkio; using namespace std; using namespace fslsurface_name; namespace fslsurface_name { // SUPPORT FUNCTION std::string safe_string(char *cptr) { if (cptr==NULL) return ""; return string(cptr); } template int read_surface( fslSurface& surf, const string & filename) { surf.scalar_indices.push_back(vector()); //cog.x = cog.y = cog.z = 0.0; // endian_format = fslSurface::machineEndianness(); //cout<<"read surface "<(fslSurface& surf, const string & filename); template int read_surface(fslSurface& surf, const string & filename); template int readPLY( fslSurface& surf, const string & filename){ /* ifstream fin(filename.c_str()); readPLYHeader( fin ); unsigned int list_index=0; for (unsigned int i = 0 ; i < element_names.size(); i++) { if (element_names[i]=="vertex") { N_vertices = readPLYVertices(fin,i) ; }else if (element_names[i]=="face") { //assuming all triangles faces = readPLYListElement(fin,i,list_index) ; N_triangles = faces.size()/3; }else { if (element_types[i][0]=="list"){ }else { } } } */ return 0; } template int readVTK( fslSurface& surf, const string & filename){ fslvtkIO* f_vtk = new fslvtkIO(filename,fslvtkIO::POLYDATA); surf.cog.x = surf.cog.y = surf.cog.z = 0.0; ////cout<<"read vtk "< verts = f_vtk->getPointsAsVector(); surf.N_vertices = verts.size()/3; for ( typename vector::iterator i = verts.begin(); i != verts.end(); i+=3) { surf.cog.x += *i; surf.cog.y += *(i+1); surf.cog.z += *(i+2); surf.vertices.push_back(vertex(*i,*(i+1),*(i+2))); } surf.cog.x /= surf.N_vertices; surf.cog.y /= surf.N_vertices; surf.cog.z /= surf.N_vertices; vector< vector > polys = f_vtk->getPolygonsAsVectorOfVectors(); for ( typename vector< vector >::iterator i = polys.begin(); i != polys.end(); ++i ) surf.faces.insert(surf.faces.end(), i->begin(), i->end()); surf.N_triangles = surf.faces.size()/3; // cout<<"add back scalars "<getScalars().size()<getScalars().size() > 0 ) { vector vsc = f_vtk->getScalars(); // for (typename vector::iterator i_sc = vsc.begin(); i_sc != vsc.end(); ++i_sc) // cout<<*i_sc<<" "; // cout<getScalars()); surf.scalar_names.push_back("vtk_scalars"); surf.scalar_indices.back().push_back( surf.scalar_data.size()-1 ); } // else { // surf->setScalars(0); // } if (surf.scalar_data.size()>0) surf.setScalars(0); delete f_vtk; return 0; } // GIFTI support functions int fsl_gifti_add_to_meta( giiMetaData * md, const std::string& name, const std::string& value, int replace ) { if ((name!="") && (value!="")) { return gifti_add_to_meta(md,name.c_str(),value.c_str(),replace); } return 1; } template int readGIFTI( fslSurface& surf, const string & filename){ cout<<"read gifti "<labeltable == NULL) ////cout<<"label table "<labeltable.length<labeltable.length; int* key = gii_surf->labeltable.key; float* rgba = gii_surf->labeltable.rgba; //************Read Top-Level Meta Data ***************// // giiMetaData surf_meta = gii_surf->meta; // int length= surf_meta.length;//number of meta data fields // for ( int i = 0 ; i < length ; ++i ) // { // } //***********done meta data ************************// for ( int i = 0 ; i < Nentries ; ++i,++key,++rgba) { float r = *(rgba++); float g = *(rgba++); float b = *(rgba++); ////cout<<"rgba "<<*key<<" "<numDA; ////cout<<"Numver of Data arrays "<meta.length<<" "<meta.name))<<" "<meta.value))<darray[i_da]->nvals; ////cout<<"GIFTI data array ("<darray[i_da]->intent)<darray[i_da]->intent; int datatype = gii_surf->darray[i_da]->datatype; int num_dim = gii_surf->darray[i_da]->num_dim; int* dims = gii_surf->darray[i_da]->dims; ////cout<<"GIFTI data array ("<datatype_str[datatype]<darray[i_da]->ind_ord; // int encoding = gii_surf->darray[i_da]->encoding; // int endian = gii_surf->darray[i_da]->endian; //-------------------------------------------------------------------------// // ////cout<<"GIFTI data array ("<darray[i_da]->numCS<darray[i_da]->numCS ; ++i_c) { vector xfm(16,0); int count=0; for ( int i = 0 ; i<4 ; ++i) for ( int j = 0 ; j<4 ; ++j, ++count) { xfm[count] = gii_surf->darray[i_da]->coordsys[i_c]->xform[i][j]; //////cout<darray[i_da]->coordsys[i_c]->dataspace ; sname = safe_string(cptr); surf.csys_dspace = sname ; // surf->v_csys_dspace.push_back(string( gii_surf->darray[i_da]->coordsys[i_c]->dataspace )); cptr = gii_surf->darray[i_da]->coordsys[i_c]->xformspace ; sname = safe_string(cptr); surf.v_csys_xfmspace.push_back( sname ); } if (gii_surf->darray[i_da]->numCS >0 ) { coordsys = * (*gii_surf->darray[i_da]->coordsys); } // READ META DATA std::string valstr; valstr=safe_string(gifti_get_meta_value(&(gii_surf->darray[i_da]->meta),"AnatomicalStructurePrimary")); if (valstr!="") surf.setAnatomicalName(valstr); valstr=safe_string(gifti_get_meta_value(&(gii_surf->darray[i_da]->meta),"AnatomicalStructureSecondary")); if (valstr!="") surf.setAnatomicalName2(valstr); valstr=safe_string(gifti_get_meta_value(&(gii_surf->darray[i_da]->meta),"GeometricType")); if (valstr!="") surf.setGeometryName(valstr); //////cout<<"read coord system "<darray[i_da]->data); surf.cog.x = surf.cog.y = surf.cog.z = 0.0; //write over vertices if ( static_cast(surf.N_vertices) == Nvals/3 ) { int noff=surf.N_vertices; typename vector< vertex >::iterator i_v = surf.vertices.begin(); for (unsigned int val = 0 ; val < surf.N_vertices ; ++val, ++data,++i_v) { if (gii_surf->darray[i_da]->ind_ord == GIFTI_IND_ORD_COL_MAJOR) { i_v->x = *data; surf.cog.x+=*data; i_v->y = *(data + noff); surf.cog.y+=*(data + noff); i_v->z = *(data + 2*noff); surf.cog.z+=*(data + 2*noff); } else { i_v->x = *data; surf.cog.x+=*data; ++data; i_v->y = *data; surf.cog.y+=*data; ++data; i_v->z = *data; surf.cog.z+=*data; } } }else {//if different append vertices unsigned int Nprev= surf.N_vertices; surf.N_vertices += (dims[0]==3) ? dims[1] : dims[0]; surf.vertices.resize(surf.N_vertices); int noff=surf.N_vertices; for (typename vector< vertex >::iterator i_v = surf.vertices.begin()+Nprev ; i_v != surf.vertices.end(); ++i_v,++data) { if (gii_surf->darray[i_da]->ind_ord == GIFTI_IND_ORD_COL_MAJOR) { float x = *data; surf.cog.x+=x; float y = *(data + noff); surf.cog.y+=y; float z = *(data + 2*noff); surf.cog.z+=z; *i_v = vertex(x,y,z); } else { float x = *data; surf.cog.x+=*data; ++data; float y = *data; surf.cog.y+=*data; ++data; surf.cog.z+=*data; *i_v = vertex(x,y,*data); } } if (surf.scalar_data.size()>0) surf.setScalars(0); } surf.cog.x /= surf.N_vertices; surf.cog.y /= surf.N_vertices; surf.cog.z /= surf.N_vertices; }else if ( intent == NIFTI_INTENT_TRIANGLE ) { bool valid_dim=false; for (int i = 0 ; idarray[i_da]->data); surf.N_triangles = Nvals / 3; surf.faces.resize(Nvals); // READ META DATA std::string valstr; valstr=safe_string(gifti_get_meta_value(&(gii_surf->darray[i_da]->meta),"TopologicalType")); if (valstr!="") surf.setTopologyName(valstr); if (gii_surf->darray[i_da]->ind_ord == GIFTI_IND_ORD_COL_MAJOR) { int noff=surf.N_triangles; for (typename vector::iterator i_f = surf.faces.begin(); i_f != surf.faces.end(); ++i_f,++data) { // awkward read for a transpose matrix *i_f = static_cast (*data); ++i_f; *i_f = static_cast (*(data+noff)); ++i_f; *i_f = static_cast (*(data+2*noff)); } } else { for (typename vector::iterator i_f = surf.faces.begin(); i_f != surf.faces.end(); ++i_f,++data) { // ////cout<<"loading faces "<<*data< (*data); } } // }else if ( ( intent == NIFTI_INTENT_SHAPE ) || (intent == NIFTI_INTENT_TIME_SERIES ) || ((intent == NIFTI_INTENT_NONE)&&(datatype == NIFTI_TYPE_FLOAT32)) ){ // cout<<"done tris"<darray[i_da]->data); vector scalars(Nvals); if ( surf.N_vertices == 0 ){ surf.vertices.resize(Nvals); typename vector::iterator i_sc = scalars.begin(); for (typename vector< vertex >::iterator i_v = surf.vertices.begin(); i_v != surf.vertices.end();++i_v,++i_sc,++data) { *i_v = vertex(*data); *i_sc = static_cast(*data); } }else if ( static_cast(Nvals) == surf.N_vertices ) { if (surf.scalar_data.empty()) { typename vector< vertex >::iterator i_v = surf.vertices.begin(); for (typename vector::iterator i_sc = scalars.begin(); i_sc != scalars.end(); ++data, ++i_sc,++i_v) { i_v->sc = static_cast (*data); *i_sc = static_cast(*data); } }else {//non vertex scalara for (typename vector::iterator i_sc = scalars.begin(); i_sc != scalars.end(); ++i_sc,++data) { *i_sc = static_cast(*data); } } }else {//non vertex scalars for scalar data that does not belong to vertices //ive separated out float and int //throw fslSurfaceException("Tried to add scalars to mismatched number of vertices that is not 0//"); vector sc_float(scalars.size());//convert to float vector::iterator i_sc2 = sc_float.begin(); for (typename vector::iterator i_sc = scalars.begin(); i_sc != scalars.end(); ++i_sc,++data,++i_sc2) { // sc_float.push_back(static_cast(*data)); *i_sc2 = static_cast(*data); } sc_type=1;//used at the moment to know where to put the names surf.nonvert_float_sc_data.push_back( sc_float ); // for (int val = 0 ; val < Nvals ; ++val, ++data ) // scalars.push_back(*data); } // ////cout<<"meta data"<darray[i_da]->meta; int index=-1; for (int i_meta = 0 ; i_meta < sc_meta.length; ++i_meta) { if (!strcmp(sc_meta.name[i_meta],"name")) { index=i_meta; } } ///index define for meta data above if (index == -1) { if ( intent == NIFTI_INTENT_SHAPE ) name="NIFTI_INTENT_SHAPE"; else if (intent == NIFTI_INTENT_TIME_SERIES ) name="NIFTI_INTENT_TIME_SERIES"; else if (intent == NIFTI_INTENT_NONE) name="NIFTI_INTENT_NONE"; else name="name"; }else{ name=sc_meta.value[index]; } if (sc_type==0) { surf.scalar_data.push_back( scalars ); surf.scalar_indices.back().push_back( surf.scalar_data.size()-1 ); surf.scalar_names.push_back(name); }else if (sc_type==1) { //scalars were added above to float surf.nonvert_float_sc_data_names.push_back( name ); } }else if ( ( intent == NIFTI_INTENT_LABEL ) || ((intent == NIFTI_INTENT_NONE)&&(datatype == NIFTI_TYPE_INT32)) ){ //////cout<<"intent label found "<darray[i_da]->data); vector scalars(Nvals); if ( ( dims[0] != static_cast(surf.N_vertices) ) && ( surf.N_vertices != 0 ) ) { // throw fslSurfaceException("Invalid Number for Vertices. Should be equal to number of vertices, unless there are 0 vertices so far."); vector sc_int(scalars.size());//convert to float vector::iterator i_sc2 = sc_int.begin(); for (typename vector::iterator i_sc = scalars.begin(); i_sc != scalars.end(); ++i_sc,++data,++i_sc2) { // sc_float.push_back(static_cast(*data)); *i_sc2 = static_cast(*data); } sc_type=1;//used at the moment to know where to put the names surf.nonvert_int_sc_data.push_back( sc_int ); // for (int val = 0 ; val < Nvals ; ++val, ++data ) }else{ // for (int i = 0 ; idarray[i_da]->data); for (typename vector::iterator i_sc = scalars.begin(); i_sc != scalars.end(); ++data, ++i_sc) { *i_sc = static_cast(*data); } } //currently can only get in here in thes case // if ( datatype != NIFTI_TYPE_INT32 ) // throw fslSurfaceException("Invalid Data Type. GIFTI standard require labels set to NIFTI_TYPE_INT32"); // //cout<<"meta data"<darray[i_da]->meta; int index = -1; for (int i_meta = 0 ; i_meta < sc_meta.length; ++i_meta) { if (!strcmp(sc_meta.name[i_meta],"name")) { //cout<<"found name "<(surf.N_vertices) ) && ( surf.N_vertices != 0 ) ) throw fslSurfaceException("Invalid Number for Vectors. Should be equal to number of vertices, unless there are 0 vertices so far."); if ( ( dims[1] != 3 ) ) throw fslSurfaceException("Invalid Number for Dimension of Vectors. Should be 3."); if ( datatype != NIFTI_TYPE_FLOAT32 ) throw fslSurfaceException("Invalid Data Type. Briview only supports vectors of type NIFTI_TYPE_FLOAT32 at the moment"); // TODO: NEED TO IMPLEMENT THE FIX FOR COL MAJOR ORDERING HERE! float* data = (float*)(gii_surf->darray[i_da]->data); vector vecs(Nvals); for (typename vector::iterator i = vecs.begin(); i != vecs.end(); ++i,++data) { *i=*data; } surf.vector_data.push_back(vecs); //get names giiMetaData sc_meta = gii_surf->darray[i_da]->meta; int index = -1; for (int i_meta = 0 ; i_meta < sc_meta.length; ++i_meta) { // cout<<"meta i "<scalar_indices.size()<<" "<scalar_indices.back().size()< unsigned int readPLYVertices( fslSurface & surf, ifstream & fin , const unsigned int & index) { surf.vertices.clear(); surf.cog.x = surf.cog.y = surf.cog.z = 0.0; unsigned int N = surf.element_sizes[index]; unsigned int N_prop = surf.element_num_props[index]; for ( unsigned int i=0 ; i < N ;i++) { vertex vert; for ( unsigned int j=0 ; j< N_prop; j++) { T temp; fin>>temp; // //cout<<"temp: "<(vert.x); surf.cog.y+=static_cast(vert.y); surf.cog.z+=static_cast(vert.z); surf.vertices.push_back(vert); } surf.cog.x /= N; surf.cog.y /= N; surf.cog.z /= N; return N; } template int writePLY( const fslSurface & surf, const string & filename) { return 1; } template int writePLYHeader( const fslSurface& surf, ofstream & fout,const string & version, const string & comment ) { fout<<"ply"<::format) { case fslSurface::ascii: fout<<"ascii "<::bigEndian: fout<<"binary_big_endian "<::littleEndian: fout<<"binary_little_endian "< int writeGIFTI( const fslSurface & surf, const std::string & filename, int enc) { //, const int & intent, const int & dtype int numDA = surf.scalar_data.size() + surf.nonvert_int_sc_data.size() + surf.nonvert_float_sc_data.size()+ surf.vector_data.size() + 2 ; //2 is for vertices and faces // int Nvertices=surf.N_vertices, intentcode=NIFTI_INTENT_POINTSET; unsigned int da_index = -1; if (Nvertices<=0) { // does not contain geometry info numDA-=2; // no geometry if (surf.vector_data.size()>0) { intentcode=NIFTI_INTENT_VECTOR; Nvertices=surf.vector_data[0].size(); } if (surf.scalar_data.size()>0) { intentcode=NIFTI_INTENT_SHAPE; Nvertices=surf.scalar_data[0].size(); } if (Nvertices<=0) { throw fslSurfaceException("Could not find valid geometry, scalar or vector data to write to file."); } } int dims[] = { Nvertices ,3,0,0,0,0 }; cout<<"numda2 "<0) { da_index++; // cout<<"write gifti"<darray[da_index]->encoding = enc; //giiCoordSystem* csys= new giiCoordSystem(); //string temp("NIFTI_XFORM_SCANNER_ANAT"); // (csys->dataspace)="NIFTI_XFORM_SCANNER_ANAT";//const_cast(temp.c_str()); // (csys->xformspace)="NIFTI_XFORM_SCANNER_ANAT";//const_cast(temp.c_str()); unsigned int count=0; vector< vector >::const_iterator i_csys = surf.v_coord_sys.begin(); for (vector::const_iterator i_x = surf.v_csys_xfmspace.begin(); i_x != surf.v_csys_xfmspace.end(); ++i_x,++i_csys, ++count) { char* cs=const_cast(i_x->c_str()); gifti_add_empty_CS(gim->darray[da_index]); gim->darray[da_index]->coordsys[count]->dataspace = cs; gim->darray[da_index]->coordsys[count]->xformspace = cs; // cout<<"sys "<at(0)<<" "<at(1)<darray[da_index]->coordsys[count]->xform, &(i_csys->at(0)), 16*sizeof(double)); //cout<<"done memcpy"<(type.c_str()); //gim->darray[da_index]->coordsys=&(csys); // gifti_add_empty_CS(gim->darray[da_index]); // gim->darray[da_index]->coordsys[da_index]->dataspace = cs; // gim->darray[da_index]->coordsys[da_index]->xformspace = cs; //memcpy(gim->darray[da_index]->coordsys[da_index]->xform, xfm, 16*sizeof(double)); } cout<<"write vertcies "<darray[da_index]->nvals = dims[0]*dims[1]; //gim->darray[da_index]->numCS = 0; gim->darray[da_index]->nbyper = sizeof(float); fsl_gifti_add_to_meta(&(gim->darray[da_index]->meta), "AnatomicalStructurePrimary",surf.anatomical_name,1); fsl_gifti_add_to_meta(&(gim->darray[da_index]->meta), "AnatomicalStructureSecondary",surf.anatomical_name2,1); fsl_gifti_add_to_meta(&(gim->darray[da_index]->meta), "GeometricType",surf.geometry_name,1); for (unsigned int i =0; i < surf.N_vertices ; ++i) { //memcpy(static_cast(gim->darray[da_index]->data)+i*3, &(vertices[0]) + i, sizeof(T)*3); *(static_cast(gim->darray[da_index]->data) + 3*i) = static_cast (surf.vertices[i].x); *(static_cast(gim->darray[da_index]->data) + 3*i+1) = static_cast (surf.vertices[i].y); *(static_cast(gim->darray[da_index]->data) + 3*i+2) = static_cast (surf.vertices[i].z); // gim->darray[da_index][1]=i_v.x; } cout<<"write traingles "<darray[da_index]->intent = NIFTI_INTENT_TRIANGLE; gim->darray[da_index]->encoding = enc; gim->darray[da_index]->dims[0] = surf.N_triangles; gim->darray[da_index]->dims[1] = 3; gim->darray[da_index]->nvals = surf.N_triangles*3; gim->darray[da_index]->datatype = NIFTI_TYPE_INT32; gim->darray[da_index]->nbyper = sizeof(int); gim->darray[da_index]->numCS=0; fsl_gifti_add_to_meta(&(gim->darray[da_index]->meta), "TopologicalType",surf.topology_name,1); cout<(gim->darray[da_index]->data); gim->darray[da_index]->data = new int[surf.N_triangles*3]; // int dimstr[] = { N_triangles ,3,0,0,0,0 }; } // if (numeric_l) { cout<<"write faces "<::const_iterator i_f = surf.faces.begin(); i_f != surf.faces.end(); ++i_f, ++i) { //cout<<"face "<(*i_f)<(gim->darray[da_index]->data) + i ) = static_cast(*i_f); // cout<<"face2"<darray[da_index]->data, &(faces[0]), sizeof(T2)*N_triangles); // gim->darray[0][1]=i_v.x; } //---------------------write scalar data---------------------// da_index++; unsigned int i_sc = 0; for ( ; i_sc < surf.scalar_data.size(); ++i_sc) { //unsigned int da_index=i_sc+2; cout<<"scalar "<darray[da_index]->intent = NIFTI_INTENT_SHAPE; gim->darray[da_index]->encoding = enc; gim->darray[da_index]->num_dim = 1; gim->darray[da_index]->dims[0] = Nvertices; gim->darray[da_index]->dims[1] = 1; gim->darray[da_index]->nvals = Nvertices; gim->darray[da_index]->datatype = NIFTI_TYPE_FLOAT32; gim->darray[da_index]->nbyper = sizeof(float); //string gim->darray[da_index]->numCS=0; //giiMetaData* meta_d = new giiMetaData(); cout<<"set scalar names "<darray[da_index]->meta), "name",surf.scalar_names[i_sc],1); cout<<"do memcpy "<(gim->darray[da_index]->data), &(surf.scalar_data[i_sc][0]), sizeof(T)*Nvertices); ++da_index; } // unsigned int i_sc_init=i_sc+1; i_sc=0; for ( ; i_sc < ( surf.nonvert_float_sc_data.size()); ++i_sc) { //unsigned int da_index=i_sc+i_sc_init+ 2; cout<<"scalar float "<darray[da_index]->intent = NIFTI_INTENT_NONE; gim->darray[da_index]->encoding = enc; gim->darray[da_index]->num_dim = 1; gim->darray[da_index]->dims[0] = surf.nonvert_float_sc_data[i_sc].size(); gim->darray[da_index]->dims[1] = 1; gim->darray[da_index]->nvals = surf.nonvert_float_sc_data[i_sc].size(); gim->darray[da_index]->datatype = NIFTI_TYPE_FLOAT32; gim->darray[da_index]->nbyper = sizeof(float); //string gim->darray[da_index]->numCS=0; //giiMetaData* meta_d = new giiMetaData(); cout<<"set scalar names "<darray[da_index]->meta), "name",surf.nonvert_float_sc_data_names[i_sc],1); cout<<"do memcpy"<(gim->darray[da_index]->data), &(surf.nonvert_float_sc_data[i_sc][0]), sizeof(float)*surf.nonvert_float_sc_data_names[i_sc].size()); ++da_index; } cout<<"scalar int "<darray[da_index]->intent = NIFTI_INTENT_NONE; gim->darray[da_index]->encoding = enc; gim->darray[da_index]->num_dim = 1; gim->darray[da_index]->dims[0] = surf.nonvert_int_sc_data[i_sc].size(); gim->darray[da_index]->dims[1] = 1; gim->darray[da_index]->nvals = surf.nonvert_int_sc_data[i_sc].size(); gim->darray[da_index]->datatype = NIFTI_TYPE_INT32; gim->darray[da_index]->nbyper = sizeof(int); //string gim->darray[da_index]->numCS=0; //giiMetaData* meta_d = new giiMetaData(); cout<<"set scalar int names "<darray[da_index]->meta), "name",surf.nonvert_int_sc_data_names[i_sc],1); cout<<"do memcpy "<::iterator ii_sc = surf.nonvert_int_sc_data[i_sc].begin(); ii_sc != surf.nonvert_int_sc_data[i_sc].end//();++ii_sc,++count) // { // *(gim->darray[da_index]->data + count) = *ii_sc; // } memcpy(static_cast(gim->darray[da_index]->data), &(surf.nonvert_int_sc_data[i_sc][0]), sizeof(int)*surf.nonvert_int_sc_data[i_sc].size()); ++da_index; } cout<<"done scalar"<darray[da_index]->intent = NIFTI_INTENT_VECTOR; gim->darray[da_index]->encoding = enc; gim->darray[da_index]->num_dim = 2; gim->darray[da_index]->dims[0] = Nvertices; gim->darray[da_index]->dims[1] = 3; gim->darray[da_index]->nvals = 3*Nvertices; gim->darray[da_index]->datatype = NIFTI_TYPE_FLOAT32; gim->darray[da_index]->nbyper = sizeof(float); //string gim->darray[da_index]->numCS=0; //giiMetaData* meta_d = new giiMetaData(); cout<<"access vector names "<darray[da_index]->meta), "name",surf.vector_names[i_vec],1); cout<<"do memcpy"<(gim->darray[da_index]->data), &(surf.vector_data[i_vec][0]), sizeof(T)*3*Nvertices); } // cout<<"write gifti4"<darray[0]->coordsys==NULL) || (gim->darray[0]->coordsys[0]==NULL)) { cout<<"null"<darray[0]->coordsys[0]); } //->dataspace = cs; // cout<<"write gifti4.75"<darray[0]->numCS=0; ////cout<<"free stuf 2"<( const fslSurface & surf, const std::string & filename, int enc); }