/* dwifit.cc Mark Jenkinson Copyright (C) 2002 FSL */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "newimage/newimageall.h" #include "utils/options.h" #define _GNU_SOURCE 1 #define POSIX_SOURCE 1 using namespace NEWIMAGE; using namespace Utilities; string title="dwifit\nCopyright(c) 2002, FSL"; string examples="dwifit -i -m -o -b [options]"; Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); Option noweight(string("-n,--noweight"), false, string("turn off SNR weighting"), false, no_argument); Option involname(string("-i,--in"), string(""), string("filename for input 4D volume"), true, requires_argument); Option outvolname(string("-o,--out"), string(""), string("filename for output parameter fits"), true, requires_argument); Option maskvolname(string("-m,--mask"), string(""), string("filename of mask input volume"), true, requires_argument); Option bmatrix(string("-b,--matrix"), string(""), string("filename of (ordered) values: b gx gy gz (as text)"), false, requires_argument); Option designmatrix(string("--designmatrix"), string(""), string("read in the design matrix directly - ignoring b-values"), false, requires_argument); //////////////////////////////////////////////////////////////////////////// int do_dwifit() { volume4D invol; volume mask; read_rad_volume4D(invol,involname.value()); read_rad_volume(mask,maskvolname.value()); // make numbers better suited for calculations (only affects S0 term) float scalefactor = invol[0].mean(); invol /= scalefactor; int ntime, nparams; ntime=invol.tsize(); ColumnVector invnoise2est(ntime); { volume invmask; invmask = 1.0f - mask; // this could be improved - want only air! float noise; for (int n=1; n<=ntime; n++) { // estimate noise from oppositely masked images volume tmpvol = invmask * invol[n-1]; noise = tmpvol.sumsquares(); noise /= invmask.sum(); if (verbose.value()) {cout << "noise = " << noise << endl;} invnoise2est(n) = 1.0/Sqr(noise); } } if ((invnoise2est.MinimumAbsoluteValue())<1e-8) { cerr << "WARNING:: near zero noise estimate - using 1 instead" << endl; invnoise2est = 1.0; } if (verbose.value()) { cout << "Inverse noise is " << invnoise2est.t() << endl; } Matrix outmat; { // scope for (most) matrices // convert to simple data matrix form (ntime x nvox) Matrix Y, logY; Y = invol.matrix(mask); int nvox= Y.Ncols(); if (ntime != Y.Nrows()) { cerr << "Error in converting image series to matrix form!" << endl; exit(-1); } // convert all values to log() and demean if (verbose.value()) { cout << "Taking logs of data" << endl; } logY=log(Y); // estimate noise for each input image // read in b value matrix and convert to design matrix, X Matrix X; if (!designmatrix.set()) { // read in simple set of values [ b gx gy gz ] and construct the // design matrix from them Matrix bvals; if (!bmatrix.set()) { cerr << "Must specify either b-value matrix or design matrix!" << endl; exit(-1); } bvals = read_ascii_matrix(bmatrix.value()); if (bvals.Nrows() != ntime) { cerr << "Number of rows in b-value matrix must be the same as number of images in DWI series" << endl; exit(-1); } X.ReSize(bvals.Nrows(),7); // set up rows as: B_11 B_22 B_33 2*B_12 2*B_13 2*B_23 1 // where B_ij = b.g_i.g_j st. log(S) = log(S0) - sum_ij B_ij D_ij // NB: last column models the constant log(S0) component for (int bv=1; bv<=bvals.Nrows(); bv++) { float bb, gx, gy, gz; bb = -bvals(bv,1); gx=bvals(bv,2); gy=bvals(bv,3); gz=bvals(bv,4); float gnorm = sqrt(gx*gx + gy*gy + gz*gz); gx /= gnorm; gy /= gnorm; gz /= gnorm; X(bv,1) = bb * gx * gx; X(bv,2) = bb * gy * gy; X(bv,3) = bb * gz * gz; X(bv,4) = 2.0 * bb * gx * gy; X(bv,5) = 2.0 * bb * gx * gz; X(bv,6) = 2.0 * bb * gy * gz; X(bv,7) = 1.0; } } else { // read in design matrix directly (good for simpler fits) X = read_ascii_matrix(designmatrix.value()); if (X.Nrows() != ntime) { cerr << "Number of rows in design matrix must be the same as number of images in DWI series" << endl; exit(-1); } } if (verbose.value()) { cout << "Design matrix = " << endl << X << endl; } nparams=X.Ncols(); // set up the matrices Matrix W(ntime,ntime), XtW(ntime,ntime), beta(nparams,1); outmat.ReSize(nparams,nvox); // fit the model separately for each voxel (as the weighting changes...) for (int n=1; n<=nvox; n++) { // set up weighting matrix W = 0.0; for (int m=1; m<=ntime; m++) { if (noweight.value()) { W(m,m) = 1.0; } else { W(m,m) = Sqr(Y(m,n)) * invnoise2est(m); } } // calculate fit (pseudo-inverse method) XtW = X.t() * W; Matrix tmp = XtW*X; beta = pinv(XtW * X) * XtW * logY.SubMatrix(1,ntime,n,n); if (!designmatrix.set()) { beta(7,1) = exp(beta(7,1))*scalefactor; // reconstitute S0 } outmat.SubMatrix(1,nparams,n,n)=beta; if (verbose.value()) { cout << "."; } } } // end scope for matrices if (verbose.value()) { cout << endl << "Finished Calculations" << endl; } volume4D outvol(invol.xsize(),invol.ysize(),invol.zsize(),nparams); outvol.setdims(invol.xdim(),invol.ydim(),invol.zdim(),invol.tdim()); outvol.setmatrix(outmat,mask,0.0f); save_volume4D(outvol,outvolname.value()); return 0; } int main(int argc,char *argv[]) { OptionParser options(title, examples); try { options.add(involname); options.add(outvolname); options.add(maskvolname); options.add(bmatrix); options.add(designmatrix); options.add(noweight); options.add(verbose); options.add(help); options.parse_command_line(argc, argv); if ( (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } } catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e) { cerr << e.what() << endl; } return do_dwifit(); }