/* skeletonapp.cc Mark Jenkinson, FMRIB Image Analysis Group Copyright (C) 2003 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ // Skeleton application framework for using newimage #define _GNU_SOURCE 1 #define POSIX_SOURCE 1 #include "newimage/newimageall.h" #include "miscmaths/miscmaths.h" #include "utils/options.h" using namespace MISCMATHS; using namespace NEWIMAGE; using namespace Utilities; // The two strings below specify the title and example usage that is // printed out as the help or usage message string title="lesion_filling \nCopyright(c) 2012, University of Oxford (Mark Jenkinson)"; string examples="lesion_filling [options] -i -l -o "; // Each (global) object below specificies as option and can be accessed // anywhere in this file (since they are global). The order of the // arguments needed is: name(s) of option, default value, help message, // whether it is compulsory, whether it requires arguments // Note that they must also be included in the main() function or they // will not be active. Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); Option lesmaskname(string("-l,--lesionmask"), string(""), string("filename of lesion mask image"), true, requires_argument); Option involname(string("-i,--in"), string(""), string("input image filename (e.g. T1w image)"), true, requires_argument); Option outname(string("-o,--out"), string(""), string("output filename (lesion filled image)"), true, requires_argument); int nonoptarg; //////////////////////////////////////////////////////////////////////////// // Local functions int urand(int min, int max) { int MAXRAND=2147483647; // = 2^31 - 1 int mrand=Max(Min(ceil((double(random())/MAXRAND)*(max-min+1)),(max-min+1)),1)+min-1; return mrand; } // for example ... print difference of COGs between 2 images ... int do_work(int argc, char* argv[]) { // variables from the matlab code... // [im,dims,pixdims]=read_avw(structim); // compb=read_avw(outerborder_comp); // comp=read_avw(lesioncomp); // lesinb=read_avw(innerborder); // lesinreg=read_avw(innerregion); volume tmpcomp; volume4D invol; volume lesionmask, comp; read_volume(lesionmask,lesmaskname.value()); read_volume4D(invol,involname.value()); if (verbose.value()) { cout << "Read in images" << endl; } // connectedcomp ../Lesion_mask_2struct_bin.nii.gz lesion_comp tmpcomp = connected_components(lesionmask); copyconvert(tmpcomp,comp); if (verbose.value()) { cout << "Counted lesions in mask : total = " << comp.max() << endl; } // fslmaths ../Lesion_mask_2struct_bin.nii.gz -dilF -sub ../Lesion_mask_2struct_bin.nii.gz ANCO_outerborder.nii.gz volume box3kernel, outborder, compb; box3kernel=box_kernel(3,3,3); outborder = morphfilter(lesionmask,box3kernel,"dilate") - lesionmask; outborder.binarise(0.5f); if (verbose.value()) { cout << "Calculated outer border mask" << endl; } // fslmaths lesion_comp.nii.gz -dilD lesion_comp_dil // fslmaths lesion_comp_dil.nii.gz -mul ANCO_outerborder.nii.gz ANCO_outerborder_comp compb = morphfilter(comp,box3kernel,"dilateD"); compb *= outborder; if (verbose.value()) { cout << "Calculated outer border components" << endl; } volume lesinb, lesinreg; // fslmaths ../Lesion_mask_2struct_bin.nii.gz -ero -sub ../Lesion_mask_2struct_bin.nii.gz -abs -thr 0.5 -bin ANCO_innerborder lesinb = morphfilter(lesionmask,box3kernel,"erodeS"); lesinb = binarise(lesionmask - lesinb,0.5f); // this is the inner border mask // fslmaths ../Lesion_mask_2struct_bin.nii.gz -sub ANCO_innerborder ANCO_innerregion lesinreg = lesionmask - lesinb; if (verbose.value()) { cout << "Calculated inner border and region masks" << endl; } int maxcomp = comp.max(); // In the matlab code there was: // % check if any points in the inner boundary are more than // % one voxel from any other points, and if so, make them part // % of the inner region instead // but this seems pointless given the definition above // for each lesion fill the interior region for (int compnum=1; compnum<=maxcomp; compnum++) { if (verbose.value()) { cout << "Component " << compnum << " of " << maxcomp << endl; } volume mask, maskinb, maskinr; mask=binarise(compb, compnum-0.5f, compnum+0.5f); maskinb=binarise(comp, compnum-0.5f, compnum+0.5f); maskinb*=lesinb; maskinr=binarise(comp, compnum-0.5f, compnum+0.5f); maskinr*=lesinreg; int nin=MISCMATHS::round(maskinr.sum()); if (nin>0) { // extra intensity values from only within the mask Matrix vals, sval; vals = invol.matrix(mask); vals=vals.t(); if (verbose.value()) { cout << "Cols = " << vals.Ncols() << " and rows = " << vals.Nrows() << endl; } int nvox; nvox = vals.Nrows(); if (vals.Ncols()>vals.Nrows()) { cerr << "WRONG ASSUMPTION ABOUT MATRIX METHOD IN NEWIMAGE!!!!!!" << endl << "Cols = " << vals.Ncols() << " and rows = " << vals.Nrows() << endl; } sval=vals; SortAscending(sval); if (verbose.value()) { cout << "Calculating cummulative distribution" << endl; } ColumnVector borders(nvox), cumnb(nvox); // cumnb is cummulative distribution float stot=sval.Sum(), cumsum=0.0; int cidx=1, prevnb=0; for (int nb=1; nb<=nvox; nb+=5) { // sample cummulative dist at every 5th sample for a bit of smoothing for (int midx=prevnb+1; midx<=nb; midx++) { cumsum+=sval(midx,1); } prevnb=nb; borders(cidx)=sval(nb,1); cumnb(cidx++)=cumsum/stot; } int maxcidx=cidx-1; if (verbose.value()) { cout << "Random sampling..." << endl; } ColumnVector idx(nin), newvals(nin); for (int midx=1; midx<=nin; midx++) { idx(midx)=urand(1,nin)/((float) nin); } // set of random values newvals=0.0f; for (int mm=1; mm<=nin; mm++) { int binno=0; // look up cummulative dist and interp for (int midx=maxcidx; midx>=1; midx--) { if (cumnb(midx)>idx(mm)) binno=midx; } // find least index if (binno==0) { binno=nin; } float minv=borders(Max(1,binno-1)); float maxv=borders(binno); newvals(mm)=(urand(0,100)/100.0f)*(maxv-minv) + minv; } if (verbose.value()) { cout << "Putting samples back into image" << endl; } if (verbose.value()) { cout << "Values are : " << newvals.t() << endl; } { volume4D newinvol(invol); newinvol.setmatrix(newvals.t(),maskinr); // put values back into image invol *= (1.0f - maskinr); invol += newinvol; } } } save_volume(invol[0],fslbasename(outname.value())+"_inneronly"); // set the (inner) border of the lesion to a smoothed version of its neighbours (outside + filled interior) ColumnVector ker1d(3); ker1d << 0.7 << 1.0 << 0.7; volume mask_inreg_outb, imn, maskn, maskbinv, imall, maskall, wall, wn; mask_inreg_outb = binarise(lesinreg + compb,0.5f); imn=convolve_separable(invol[0]*mask_inreg_outb,ker1d,ker1d,ker1d); maskn=convolve_separable(mask_inreg_outb,ker1d,ker1d,ker1d); maskbinv=binarise(1.0f-lesinb,0.5f); // simple alternative //invol[0]=invol[0]*maskbinv + lesinb*divide(imn,maskn,maskn); imall=convolve_separable(invol[0]*maskbinv,ker1d,ker1d,ker1d); maskall=convolve_separable(maskbinv,ker1d,ker1d,ker1d); //wall=0.5*(maskall>0) + 0.5*(maskall>0).*(maskn==0); //wn=0.5*(maskn>0) + 0.5*(maskn>0).*(maskall==0); float eps=1e-8; wall=0.5f*binarise(maskall,eps)*(binarise(maskn,-eps,eps)+1.0f); wn=0.5f*binarise(maskn,eps)*(binarise(maskall,-eps,eps)+1.0f); invol[0] = invol[0]*maskbinv + wall*lesinb*divide(imall,maskall,maskall) + wn*lesinb*divide(imn,maskn,maskn); save_volume(invol[0],outname.value()); return 0; } ////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // ORIGINAL MATLAB CODE /* masks=convn((1-lesinb),ones([3,3,3]),'same'); newinreg=(masks==0).*lesinb; lesinb=lesinb-newinreg; lesinreg=lesinreg+newinreg; for compnum=1:maxcomp, disp([' Component ',num2str(compnum)]); mask=(compb==compnum); maskinb=(comp==compnum).*lesinb; maskinr=(comp==compnum).*lesinreg; nin=sum3(maskinr); if (nin>0), vals=im(mask); nvox=length(vals); nb=1:5:nvox; sval=sort(vals); cumnb=cumsum(nb)/sum(nb); borders=sval(nb); disp('Made histogram'); % sample from histogram for inner region idx=randperm(nin)/nin; % make this truly random - uniform [0,1] newvals=zeros([nin 1]); for mm=1:nin, binno=min(find(cumnb>idx(mm))); if (length(binno)==0), binno=length(cumnb); end minv=borders(max(1,binno-1)); maxv=borders(binno); newvals(mm)=rand(1)*(maxv-minv)+minv; end im(maskinr>0)=newvals; disp('Filled interior region'); end end % average nearest neighbours of each voxel in the inner border kernel=ones([3,3,3]); k1d=[0.7 1 0.7]; kernel(:,:,1)=k1d(1)*k1d'*k1d; kernel(:,:,2)=k1d(2)*k1d'*k1d; kernel(:,:,3)=k1d(3)*k1d'*k1d; disp('Averaging interior and boundary neighbourhood voxel for image'); imn=convn(im.*((lesinreg+compb)>0),kernel,'same'); disp('Averaging interior/boundary for mask'); maskn=convn(((lesinreg+compb)>0),kernel,'same'); disp('Filled in inner border'); %% CAN I REPLACE EVERYTHING BELOW WITH JUST: im=im.*(1-lesinb) + lesinb.*imn./max(0.00001,maskn) disp('Averaging all neighbourhood voxels for image'); imall=convn(im.*(1-lesinb),kernel,'same'); disp('Averaging all neighbourhood for mask'); maskall=convn((1-lesinb),kernel,'same'); % calculate weights so that if both are valid it averages otherwise % it takes just one of them wall=0.5*(maskall>0) + 0.5*(maskall>0).*(maskn==0); wn=0.5*(maskn>0) + 0.5*(maskn>0).*(maskall==0); im=im.*(1-lesinb) + wall.*lesinb.*imall./max(0.00001,maskall) ... + wn.*lesinb.*imn./max(0.00001,maskn); save_avw(im,outputname,'f',pixdims) */ //////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]) { Tracer tr("main"); OptionParser options(title, examples); try { // must include all wanted options here (the order determines how // the help message is printed) options.add(involname); options.add(outname); options.add(lesmaskname); options.add(verbose); options.add(help); nonoptarg = options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } } catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e) { cerr << e.what() << endl; } // Call the local functions return do_work(argc,argv); }