/* fsl_regfilt - Christian F. Beckmann, FMRIB Image Analysis Group Copyright (C) 2006-2011 University of Oxford / Christian F. Beckmann */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "libvis/miscplot.h" #include "miscmaths/miscmaths.h" #include "miscmaths/miscprob.h" #include "utils/options.h" #include #include "newimage/newimageall.h" #include "melhlprfns.h" using namespace MISCPLOT; using namespace MISCMATHS; using namespace Utilities; using namespace std; // The two strings below specify the title and example usage that is // printed out as the help or usage message string title=string("fsl_regfilt")+ string("\n\n Copyright(c) 2011, University of Oxford (Christian F. Beckmann)\n")+ string(" Data de-noising by regressing out part of a design matrix\n")+ string(" using simple OLS regression on 4D images"); string examples="fsl_regfilt -i -d -f -o [options]"; //Command line Options { Option fnin(string("-i,--in"), string(""), string(" input file name (4D image)"), true, requires_argument); Option fnout(string("-o,--out"), string(""), string("output file name for the filtered data"), true, requires_argument); Option fndesign(string("-d,--design"), string(""), string("file name of the matrix with time courses (e.g. GLM design or MELODIC mixing matrix)"), true, requires_argument); Option fnmask(string("-m,--mask"), string(""), string("mask image file name"), false, requires_argument); Option filter(string("-f,--filter"),string(""), string("filter out part of the regression model, e.g. -f \"1,2,3\" "), false, requires_argument); Option freqfilt(string("-F,--freqfilt"),false, string("filter out components based on high vs. low frequency content "), false, no_argument); Option freq_ic(string("--freq_ic"),true, string("switch off IC Z-stats filtering as part of frequency filtering"), false, no_argument); Option freq_ic_smooth(string("--freq_ic_smooth"),5.0, string("smoothing width for IC Z-stats filtering as part of frequency filtering"), false, no_argument); Option freqthresh(string("--fthresh"),0.15, string("frequency threshold ratio - default: 0.15"), false,requires_argument); Option freqthresh2(string("--fthresh2"),0.02, string("frequency filter score threshold - default: 0.02"), false,requires_argument); Option verbose(string("-v"),FALSE, string(" switch on diagnostic messages"), false, no_argument); Option aggressive(string("-a"),FALSE, string(" switch on aggressive filtering (full instead of partial regression)"), false, no_argument); Option perfvn(string("--vn"),FALSE, string(" perform variance-normalisation on data"), false, no_argument); Option help(string("-h,--help"), 0, string("display this help text"), false,no_argument); Option debug(string("--debug"), false, string("switch on debug messages"), false,no_argument,false); // Output options Option outdata(string("--out_data"),string(""), string("output file name for pre-processed data (prior to denoising)"), false, requires_argument); Option outmix(string("--out_mix"),string(""), string("output file name for new mixing matrix"), false, requires_argument); Option outvnscales(string("--out_vnscales"),string(""), string("output file name for scaling factors from variance normalisation"), false, requires_argument); /* } */ //Globals { int voxels = 0; float TR; Matrix data; Matrix design; Matrix fdesign; Matrix meanR, meanC; Matrix newData, newMix; RowVector vnscales; volume mask; volume Mean; vector comps, ind; vector::iterator it; /* } */ //////////////////////////////////////////////////////////////////////////// // Local functions void save4D(Matrix what, string fname){ if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){ volume4D tempVol; if(what.Nrows()>what.Ncols()) tempVol.setmatrix(what.t(),mask); else tempVol.setmatrix(what,mask); tempVol.setTR(TR); save_volume4D(tempVol,fname); } } bool isimage(Matrix what){ if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels)) return TRUE; else return FALSE; } void saveit(Matrix what, string fname){ if(isimage(what)) save4D(what,fname); else write_ascii_matrix(what,fname); } Matrix smooth_map(Matrix what, float howmuch){ volume4D tempVol; tempVol.setmatrix(what,mask); tempVol= smooth(tempVol,howmuch); Matrix out; out = tempVol.matrix(mask); return out; } int parse_filterstring(){ int ctr=0; char *p; char t[1024]; const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?"; strcpy(t, filter.value().c_str()); p=strtok(t,discard); ctr = atoi(p); if(ctr>0 && ctr<=design.Ncols()) comps.push_back(ctr); do{ p=strtok(NULL,discard); if(p){ ctr = atoi(p); if(ctr>0 && ctr<=design.Ncols()) comps.push_back(ctr); } }while(p); return 0; } int calc_freqindex(){ if(debug.value()) cerr << " In calc_freqindex " << endl; fdesign = Melodic::calc_FFT(design); if(debug.value()) cerr << " fdesign: " << fdesign.Nrows() << " x " << fdesign.Ncols() << endl; int Nps = fdesign.Nrows(); float MAXf = 1/(2*TR); float Nthresh = ceil(Nps * freqthresh.value()/MAXf); if(debug.value()) cerr << " Nps: " << Nps << " MAXf: " << MAXf << " Nthresh: " << Nthresh << endl; Matrix sum_ratio; sum_ratio = SP(sum(fdesign.Rows(1,Nthresh),1),pow(sum(sum(fdesign.Rows(Nthresh+1,Nps))),-1)); sum_ratio /= (float)sum_ratio.MaximumAbsoluteValue(); if(debug.value()) cerr << " sum_ratio: " << sum_ratio << endl; if(freq_ic.value()){ Matrix scores = zeros(1,design.Ncols()); { Matrix ICs, noisestddev, stdNoisei,unmixMatrix; unmixMatrix = pinv(design); ICs = unmixMatrix * data; noisestddev = stdev(data-design*ICs); stdNoisei = pow(noisestddev* std::sqrt((float)(data.Nrows()-1))/ std::sqrt((float)(data.Nrows()-ICs.Nrows())),-1); ColumnVector diagvals; diagvals = pow(diag( unmixMatrix*unmixMatrix.t()),-0.5); ICs=smooth_map(SP(ICs,diagvals*stdNoisei),freq_ic_smooth.value()); ICs= SP(ICs,ones(ICs.Nrows(),1)*meanR); volume4D tempVol; tempVol.setmatrix(ICs,mask); tempVol.threshold(0.0); for(int ctr = 0; ctr < design.Ncols(); ctr++ ) scores(1,ctr+1) = tempVol[ctr].percentile(0.99,mask); scores/=scores.MaximumAbsoluteValue(); scores-=scores.MinimumAbsoluteValue(); if(debug.value()) cerr << " initial scores: " << scores << endl; } scores = SP(scores,sum_ratio); scores /= scores.Maximum(); if(debug.value()) cerr << " scores: " << scores << endl; for(int ctr = 1; ctr <= design.Ncols(); ctr++ ) if(scores(1,ctr) < freqthresh2.value()) comps.push_back(ctr); } return 0; } int get_comp(){ if(filter.value().length()>0 && parse_filterstring()) return 1; if(freqfilt.value() && calc_freqindex()) return 1; //sort and remove duplicates sort (comps.begin(), comps.end()); it = unique (comps.begin(), comps.end()); comps.resize( it - comps.begin() ); if(debug.value()){ for (it=comps.begin(); it!=comps.end(); ++it) cout << " " << *it; cout << endl; } return 0; } int dofilter(){ if(verbose.value()) cout << " Calculating maps " << endl; Matrix unmixMatrix = pinv(design); Matrix maps = unmixMatrix * data; Matrix noisedes; Matrix noisemaps; noisedes = design.Column(comps.at(0)); noisemaps = maps.Row(comps.at(0)).t(); for(int ctr = 1; ctr < (int)comps.size();++ctr){ noisedes |= design.Column(comps.at(ctr)); noisemaps |= maps.Row(comps.at(ctr)).t(); } if(debug.value()) cerr << " noisedes " << noisedes.Nrows() << " x " << noisedes.Ncols() << endl; if(verbose.value()) cout << " Calculating filtered data " << endl; if(aggressive.value()) newData = data - noisedes * (pinv(noisedes)*data); else newData = data - noisedes * noisemaps.t(); if(perfvn.value()) newData = SP(newData,ones(newData.Nrows(),1)*vnscales); newData = newData + ones(newData.Nrows(),1)*meanR; for(int ctr = 1; ctr <= design.Ncols();++ctr) ind.push_back(ctr); for(int ctr = 0; ctr < (int)comps.size();++ctr) it=remove(ind.begin(),ind.end(),comps.at(ctr)); ind.resize(design.Ncols()-comps.size()); if(debug.value()){ for (it=ind.begin(); it!=ind.end(); ++it) cout << " " << *it; cout << endl; } if(ind.size()>0){ newMix=design.Column(ind.at(0)); for(int ctr = 1; ctr < (int)ind.size();++ctr) newMix |= design.Column(ind.at(ctr)); newMix = newMix - noisedes * (pinv(noisedes)*newMix); if(debug.value()) cerr << " newMix " << newMix.Nrows() << " x " << newMix.Ncols() << endl; } return 0; } int setup(){ if(fsl_imageexists(fnin.value())){//read data //input is 3D/4D vol volume4D tmpdata; read_volume4D(tmpdata,fnin.value()); TR=tmpdata.TR(); // create mask if(fnmask.value()>""){ read_volume(mask,fnmask.value()); if(!samesize(tmpdata[0],mask)){ cerr << "ERROR: Mask image does not match input image" << endl; return 1; }; }else{ if(verbose.value()) cout << " Creating mask image " << endl; Mean = meanvol(tmpdata); float Mmin, Mmax; Mmin = Mean.min(); Mmax = Mean.max(); mask = binarise(Mean,float(Mmin + 0.01* (Mmax-Mmin)),Mmax); } data = tmpdata.matrix(mask); voxels = data.Ncols(); if(verbose.value()) cout << " Data matrix size : " << data.Nrows() << " x " << voxels << endl; }else{ cerr << "ERROR: cannot read input image " << fnin.value()<"") saveit(data,outdata.value()); if(outvnscales.value()>"") saveit(vnscales,outvnscales.value()); if(outmix.value()>"" && newMix.Storage()>0) saveit(newMix,outmix.value()); } int do_work(int argc, char* argv[]) { if(setup()) exit(1); if(get_comp()) exit(1); if(dofilter()) exit(1); write_res(); return 0; } //////////////////////////////////////////////////////////////////////////// int main(int argc,char *argv[]){ Tracer tr("main"); OptionParser options(title, examples); try{ // must include all wanted options here (the order determines how // the help message is printed) options.add(fnin); options.add(fnout); options.add(fndesign); options.add(fnmask); options.add(filter); options.add(freqfilt); options.add(freq_ic); options.add(freq_ic_smooth); options.add(freqthresh); options.add(freqthresh2); options.add(perfvn); options.add(verbose); options.add(aggressive); options.add(help); options.add(debug); options.add(outdata); options.add(outmix); options.add(outvnscales); options.parse_command_line(argc, argv); // line below stops the program if the help was requested or // a compulsory option was not set if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){ options.usage(); exit(EXIT_FAILURE); }else{ // Call the local functions return do_work(argc,argv); } }catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); }catch(std::exception &e) { cerr << e.what() << endl; } }