/* MELODIC - Multivariate exploratory linear optimized decomposition into independent components ggmix.cc - Gaussian & Gaussian/Gamma Mixture Model Christian F. Beckmann, FMRIB Image Analysis Group Copyright (C) 1999-2008 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "newimage/newimageall.h" #include "ggmix.h" #include "miscmaths/miscprob.h" #include #include using namespace NEWIMAGE; string float2str(float f,int width, int prec, bool scientif) { ostrstream os; int redw = int(std::abs(std::log10(std::abs(f))))+1; if(width>0) os.width(width); if(scientif) os.setf(ios::scientific); os.precision(redw+std::abs(prec)); os.setf(ios::internal, ios::adjustfield); os << f << '\0'; return os.str(); } namespace GGMIX{ void ggmix::setup(const RowVector& dat, const string dirname, int cnum, volume themask, volume themean, int num_mix, float eps, bool fixit) { cnumber = cnum; Mask = themask; Mean = themean; prefix = string("IC_")+num2str(cnum); fitted = false; nummix = num_mix; numdata = dat.Ncols(); //normalise data datamean = mean(dat,2).AsScalar(); datastdev= stdev(dat,2).AsScalar(); data=(dat - datamean)/datastdev; props=zeros(1,nummix); vars=zeros(1,nummix); means=zeros(1,nummix); Params=zeros(1,nummix); logprobY = 1.0; props = std::pow(float(nummix),float(-1.0)); Matrix tmp1; tmp1 = data * data.t() / numdata; vars = tmp1.AsScalar(); float Dmin, Dmax, IntSize; Dmin = min(data).AsScalar(); Dmax = max(data).AsScalar(); IntSize = Dmax / nummix; means(1)=mean(data,2).AsScalar(); for (int ctr=2; ctr <= means.Ncols(); ctr++){ means(ctr) = Dmax - (ctr - 1.5) * IntSize; } means(2)=means(1)+2*sqrt(vars(1)); //means(2)=means(1)+ 0.6*(Dmax-means(1)); if(nummix>2) //means(3)=means(1)-0.6*(means(1)-Dmin); means(3)=means(1)-2*sqrt(vars(1)); epsilon = eps; if(epsilon >=0 && epsilon < 0.0000001) {epsilon = std::log(float(dat.Ncols()))/1000 ;} fixdim = fixit; } Matrix ggmix::threshold(const RowVector& dat, string levels) { Matrix Res; Res = 1.0; string tmpstr; tmpstr = levels; //cerr << " Levels : " << levels << endl << endl; Matrix levls(1,4); levls = 0; Matrix fpr; Matrix fdr; Matrix nht; char *p; char t[1024]; const char *discard = ", [];{(})abcdeghijklmopqstuvwxyzABCEGHIJKLMNOQSTUVWXYZ~!@#$%^&*_-=+|\':>0){ fdr = fdr | New;} else{ fdr = New; } }else{ if(strchr(p,'p')){ levls(1,2)++; if(fpr.Storage()>0){ fpr = fpr | New; }else{ fpr = New; } }else{ if(strchr(p,'n')){ levls(1,4)++; if(nht.Storage()>0){ nht = nht | New; }else{ nht = New; } }else{ levls(1,1)++; levls = levls | New; } } } p=strtok(NULL,discard); } if(fpr.Storage()>0){levls = levls | fpr;} if(fdr.Storage()>0){levls = levls | fdr;} if(nht.Storage()>0){levls = levls | nht;} //cerr << " levles : " << levls << endl << endl; Res = threshold(data, levls); set_threshmaps(Res); return Res; } Matrix ggmix::threshold(const RowVector& dat, Matrix& levels) { Matrix tests; tests=levels; Matrix Nprobs; //if only single Gaussian: resort to nht if(nummix==1||props(1)>0.999||probmap.Sum()<0.05){ if(levels(1,4)==0){ Matrix New(1,6); New(1,5)=0.05; New(1,6)=0.01; New(1,4)=2;New(1,1)=0;New(1,2)=0;New(1,3)=0;tests=New; }else{ Matrix New; New = levels.Columns(int(1+levels(1,1)+levels(1,2) +levels(1,3)),levels.Ncols()); New(1,4) = levels(1,4); New(1,1)=0;New(1,1)=0;New(1,3)=0; tests=New; } } int numtests = int(tests(1,1)+tests(1,2)+tests(1,3)+tests(1,4)); Matrix Res(numtests,numdata); Res = 0.0; int next = 1; for(int ctr1=1;ctr1<=tests(1,1);ctr1++){ if(4+next <= tests.Ncols()){ // message(" alternative hypothesis test at p > " << tests(1,4+next) << endl); add_infstr(" alternative hypothesis test at p > "+float2str(tests(1,4+next),0,2,false)); Matrix tmpNull; tmpNull = dat; float cutoffpos, cutoffneg; // cutoffpos = max(dat).AsScalar()+0.1; // cutoffneg = min(dat).AsScalar()-0.1; cutoffpos = means(1)+6*std::sqrt(vars(1)+0.0000001); cutoffneg = means(1)-6*std::sqrt(vars(1)+0.0000001); for(int ctr=1; ctr<=tmpNull.Ncols(); ctr++) if( probmap(ctr) > tests(1,4+next) ){ if( dat(ctr) > means(1) ) cutoffpos = std::min(cutoffpos, float(dat(ctr))); else cutoffneg = std::max(cutoffneg, float(dat(ctr))); } // cerr << " Cutoff " << cutoffneg << " " << cutoffpos << endl; for(int ctr=1; ctr<=tmpNull.Ncols(); ctr++) if( (dat(ctr) > cutoffneg) && (dat(ctr) < cutoffpos) ) tmpNull(1,ctr)=0.0; // for(int ctr=1; ctr<=tmpNull.Ncols(); ctr++) // if( probmap(ctr) < tests(1,4+next)) // tmpNull(1,ctr)=0.0; Res.Row(next) << tmpNull; } next++; } for(int ctr1=1;ctr1<=tests(1,2);ctr1++){ if(4+next <=tests.Ncols()){ cerr << " false positives control " << tests(1,4+next)< (1-tests(1,4+next)) * tmpAlt(1,ctr)) tmp(1,ctr)=0.0; Res.Row(next) << tmp; next++; } } for(int ctr1=1;ctr1<=tests(1,4);ctr1++){ if(4+next <=tests.Ncols()){ // message(" 2-sided null hypothesis test at " << tests(1,4+next)< 0.5*(tests(1,4+next))))) tmpNull(1,ctr)=0.0; Res.Row(next) << tmpNull; } next++; } return Res; } /* GMM fitting */ void ggmix::gmmupdate() { int it_ctr = 1; bool exitloop = false; float oldll; // cerr << " fit with : " << means.Ncols() << endl; Matrix tmp0;Matrix tmp1;Matrix prob_K__y_theta; Matrix kdata; RowVector prob_Y__theta;RowVector Nbar; RowVector mubar;RowVector sigmabar;RowVector pibar; do{ oldll = logprobY; //make sure all variances are acceptable for(int ctr1=1; ctr1 <=vars.Ncols(); ctr1++) if(vars(ctr1)<0.0001){ vars(ctr1) = 0.0001; } tmp0 = normpdf(data,means,vars); tmp1 = SP(props.t()*ones(1,numdata),tmp0); prob_Y__theta << sum(tmp1,1); logprobY = log(prob_Y__theta).Sum(); prob_K__y_theta = SP(tmp1,pow(ones(nummix,1)*prob_Y__theta,-1)); Nbar << sum(prob_K__y_theta,2).t(); pibar = Nbar / numdata; kdata = ones(nummix,1)*data; mubar <= -epsilon;} else{exitloop = (((logprobY-oldll < epsilon)&&(it_ctr>20)) ||(it_ctr>400));} it_ctr++; }while(!exitloop); } void ggmix::gmmfit() { int i,j; //cerr << means << " " << vars << " " << props << endl; //cerr << fixdim << endl; if(fixdim){ if(nummix>1){ gmmupdate(); add_params(means,vars,props,logprobY,MDL,Evi,true); }else{ means.ReSize(1); means = data.Sum()/numdata; vars.ReSize(1); vars = var(data,2); props.ReSize(1); props = 1.0; gmmevidence(); } }else{ RowVector Score(Params.Ncols()); do{ //cerr << " fitting GMM with " << nummix << endl; //cerr << means << " " << vars << " " << props << endl; gmmupdate(); // cerr << means << " " << vars << " " << props << endl; Score(nummix) = gmmevidence(); int idx1,idx2; RowVector pitmp = props; pitmp.MaximumAbsoluteValue1(idx1); pitmp(idx1)=0.0; pitmp.MaximumAbsoluteValue1(idx2); //status(" "); if(props.MaximumAbsoluteValue1(i)<0.9){ if((vars(idx2)>0.15)&& (std::abs(means(idx2)-means(idx1))<0.5*vars(idx1))){ Score(nummix) = Score(nummix)/(2*(means(idx1))); } } add_params(means,vars,props,logprobY,MDL,Evi,true); //cerr << " Evi : " << evidence() << " ("<< nummix << ")" << endl; gmmreducemm(); means = means.Columns(1,nummix); vars = vars.Columns(1,nummix); props = props.Columns(1,nummix); }while(nummix>1); means.ReSize(1); means = data.Sum()/numdata; vars.ReSize(1); vars = var(data,2); props.ReSize(1); props = 1.0; Score(nummix) = gmmevidence(); add_params(means,vars,props,logprobY,MDL,Evi,true); //identify best MM Score.MinimumAbsoluteValue2(i,j); means.ReSize(j); vars.ReSize(j); props.ReSize(j); nummix = j; int index; index = 3 + (j-1)*5; means = Params.SubMatrix(index,index,1,j); vars = Params.SubMatrix(index+1,index+1,1,j); props = Params.SubMatrix(index+2,index+2,1,j); } //make sure that maximum mode is first // cerr <<" Max Abs : " << props.MaximumAbsoluteValue2(i,j) << " " << j << endl; props.MaximumAbsoluteValue2(i,j); if(j>1){ float tmp; tmp = means(1);means(1) = means(j);means(j)=tmp; tmp = vars(1);vars(1) = vars(j);vars(j)=tmp; tmp = props(1);props(1) = props(j);props(j)=tmp; } add_params(means,vars,props,logprobY,MDL,Evi,true); //write_ascii_matrix(mainhtml.appendDir(prefix+"-GMM_params.txt"),Params); if(nummix==1) probmap << normcdf(data,means(1),vars(1)); else{ Matrix Nprobs; Matrix tmp0; tmp0 = normpdf(data,means,vars); Nprobs = SP(props.t()*ones(1,numdata),tmp0); tmp0 = ones(Nprobs.Nrows(),1)*pow(sum(Nprobs,1),-1); Nprobs = SP(tmp0,Nprobs); probmap << SP(sum(Nprobs.Rows(2,Nprobs.Nrows()),1), pow(sum(Nprobs,1),-1)); } } float ggmix::gmmevidence() { Matrix tmp0; if(means.Ncols()>1){ tmp0 = normpdf(data,means,vars); }else{ tmp0 = normpdf(data,means.AsScalar(),vars.AsScalar()); } Matrix tmp1; tmp1 = SP(props.t()*ones(1,numdata),tmp0); tmp0 = SP(tmp0,pow(ones(nummix,1)*sum(tmp1,1),-1)); tmp0 = pow(tmp0-ones(nummix,1)*tmp0.Row(nummix),2); float logH = 0; if(means.Ncols()>1){ logH = sum(log(sum(tmp0.Rows(1,nummix-1),2)),1).AsScalar(); } logH = logH + 2*sum(log(std::sqrt(2.0)*numdata*props),2).AsScalar(); logH = logH - 2*sum(props,2).AsScalar(); RowVector prob_Y__theta; prob_Y__theta << sum(tmp1,1); logprobY = log(prob_Y__theta).Sum(); MDL = -logprobY + (1.5*nummix-0.5)* std::log(float(numdata)); Evi = -logprobY +nummix*std::log(2.0)-std::log(MISCMATHS::gamma(nummix)) -3*nummix/2*std::log(M_PI)+0.5*logH; return Evi; } void ggmix::gmmreducemm() { Matrix dlm(nummix,nummix); Matrix mus(nummix,nummix); Matrix rs(nummix,nummix); for(int ctri=1;ctri<=nummix; ctri++){ for(int ctrj=1;ctrj<=nummix; ctrj++){ mus(ctri,ctrj) = (props(ctri)*means(ctri)+props(ctrj)*means(ctrj)) /(props(ctri)+props(ctrj)); rs(ctri,ctrj) = (props(ctri)*(vars(ctri)+ std::pow(means(ctri)-mus(ctri,ctrj),2) ) + props(ctrj)*(vars(ctrj) + std::pow(means(ctrj)-mus(ctri,ctrj),2))) / (props(ctri)+props(ctrj)); dlm(ctri,ctrj) = 0.5*numdata*( props(ctri)*std::log( std::abs(rs(ctri,ctrj))/std::abs(vars(ctri))) + props(ctrj)*std::log(std::abs(rs(ctri,ctrj)) / std::abs(vars(ctrj)))); } } dlm += IdentityMatrix(nummix)*dlm.Maximum(); int i,j; float val; val=dlm.MinimumAbsoluteValue2(i,j); //cerr << " " << val << " " << i << " " << j << endl; nummix--; //cerr << "NumMix" << nummix << endl; RowVector newmean(nummix); RowVector newvars(nummix); RowVector newprop(nummix); int ctr0 = 1; for(int ctr=1; ctr<=nummix+1; ctr++){ if(ctr!=i&&ctr!=j){ newmean(ctr0) = means(ctr); newvars(ctr0) = vars(ctr); newprop(ctr0) = props(ctr); ctr0++; } } //cerr << "ctr0 " << ctr0 << endl; if(ctr0<=nummix){ newmean(ctr0) = mus(i,j); newvars(ctr0) = rs(i,j); newprop(ctr0) = props(i)+props(j); means = newmean; vars=newvars; props=newprop; } } void ggmix::ggmfit() {// fit a mixture of a Gaussian and multiple Gamma functions to the histogram float log_p_y_theta = 1.0; float old_ll = 2.0; float g_eps = 0.000001; int it_ctr = 0; double Dmax, Dmin; Dmax = 2 * data.Maximum(); Dmin = -2 * data.Minimum(); //resize means, vars and props if(nummix > 3) nummix = 3; means = means.Columns(1,nummix); vars = vars.Columns(1,nummix); props = props.Columns(1,nummix); means(1) = -2*mean(data,2).AsScalar(); Matrix tmp1;Matrix prob_K__y_theta; Matrix kdata; RowVector prob_Y__theta;RowVector Nbar; RowVector mubar;RowVector sigmabar;RowVector pibar; Matrix p_ygx(nummix,numdata); offset = 0.0; float const2; Matrix negdata(data); negdata = -data; while((it_ctr<30) || ((std::abs(old_ll - log_p_y_theta)>g_eps) && (it_ctr<500))) { // fit GGM it_ctr++; //offset = (std::min(0.2,1-props(1)))*std::sqrt(vars(1)); // //make sure all variances are acceptable for(int ctr1=1; ctr1 <=nummix; ctr1++) if(vars(ctr1)<0.0001){ vars(ctr1) = 0.0001; } p_ygx = 0.0; p_ygx.Row(1) << normpdf(data,means(1),vars(1)); const2 = (2.6-props(1))*sqrt(vars(1))+means(1); //min. nht level means(2) = (std::max(means(2), std::max(0.001, 0.5 * ( const2 + std::sqrt( const2*const2 + 4*vars(2)))))); vars(2) = std::max(std::min(vars(2), 0.5*std::pow(means(2),2)),0.0001); p_ygx.Row(2) << gammapdf(data,means(2),vars(2)); if(nummix>2){ const2 = (2.6-props(1))*sqrt(vars(1))-means(1); means(3) = -(std::max(-means(3), std::max(0.001, 0.5 * ( const2 + std::sqrt( const2*const2 + 4*vars(3)))))); vars(3) = std::max(std::min(vars(3), 0.5*std::pow(means(3),2)),0.0001); p_ygx.Row(3) << gammapdf(negdata,-means(3),vars(3)); } tmp1 = SP(props.t()*ones(1,numdata),p_ygx); prob_Y__theta << sum(tmp1,1); //deal with non-modelled voxels for(int ctr=1; ctr<=tmp1.Ncols(); ctr++) if(prob_Y__theta(ctr) < 0.0001) prob_Y__theta(ctr) = 0.0001; old_ll = log_p_y_theta; log_p_y_theta = log(prob_Y__theta).Sum(); // cerr << "calculated log_prob_Y__theta" <g_eps) && (it_ctr<300))){//update prob_K__y_theta = SP(tmp1,pow(ones(nummix,1)*prob_Y__theta,-1)); Nbar << sum(prob_K__y_theta,2).t(); for(int ctr=1; ctr<=Nbar.Ncols(); ctr++) if(Nbar(ctr) < 0.0001 * numdata) Nbar = Nbar + 0.0001; pibar= Nbar / numdata; // cerr << "pibar :" << pibar << endl; kdata = ones(nummix,1)*data; mubar < 1.0 if(props(1)<0.4 ){ //set up GMM // message(" try Gaussian Mixture Model " << endl); props=zeros(1,nummix); vars=zeros(1,nummix); means=zeros(1,nummix); Params=zeros(1,nummix); logprobY = 1.0; props = std::pow(float(nummix),float(-1.0)); tmp1 = data * data.t() / numdata; vars = tmp1.AsScalar(); float Dmin, Dmax, IntSize; Dmin = min(data).AsScalar(); Dmax = max(data).AsScalar(); IntSize = Dmax / nummix; means(1)=mean(data,2).AsScalar(); for (int ctr=2; ctr <= means.Ncols(); ctr++){ means(ctr) = Dmax - (ctr - 1.5) * IntSize; } means(2)=means(1)+sqrt(vars(1)); if(nummix>2) means(3)=means(1)-sqrt(vars(1)); fit(string("GMM")); } //cerr << prefix << " " << it_ctr << endl; } /* INPUT / OUTPUT */ void ggmix::add_params(Matrix& mu, Matrix& sig, Matrix& pi, float logLH, float MDL, float Evi, bool advance) { int size = Params.Ncols(); if(size<2){size=2;} Matrix New(5,size); New = 0; New.SubMatrix(3,3,1,mu.Ncols())=mu; New.SubMatrix(4,4,1,mu.Ncols())=sig; New.SubMatrix(5,5,1,mu.Ncols())=pi; New(1,1)=nummix; New(1,2)=-logLH; New(2,1)=Evi; New(2,2)=MDL; if(Params.Storage()>nummix){ Params = New & Params; }else{ Params = New; } } void ggmix::get_params(int index, Matrix& mu, Matrix& sig, Matrix& pi, float logLH, float MDL, float Evi) { } void ggmix::save() { } void ggmix::status(const string &txt) { cerr << txt << "epsilon " << epsilon << endl; cerr << txt << "nummix " << nummix << endl; cerr << txt << "numdata " << numdata << endl; cerr << txt << "means " << means << endl; cerr << txt << "vars " << vars << endl; cerr << txt << "props " << props << endl; } }