/* MELODIC - Multivariate exploratory linear optimized decomposition into independent components meldata.cc - data handler / container class Christian F. Beckmann, FMRIB Image Analysis Group Copyright (C) 1999-2008 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "newimage/newimageall.h" #include "meloptions.h" #include "meldata.h" #include "melodic.h" #include "utils/log.h" #include #include "miscmaths/miscprob.h" #include "melhlprfns.h" using namespace Utilities; using namespace NEWIMAGE; namespace Melodic{ // {{{ Setup Matrix MelodicData::process_file(string fname, int numfiles) { volume4D RawData; //read data message("Reading data file " << fname << " ... "); read_volume4D(RawData,fname); message(" done" << endl); del_vols(RawData,opts.dummy.value()); Mean += meanvol(RawData)/numfiles; //reshape Matrix tmpData; tmpData = RawData.matrix(Mask); //estimate smoothness if((Resels == 0)&&(!opts.filtermode)) Resels = est_resels(RawData,Mask); //convert to percent BOLD signal change if(opts.pbsc.value()){ message(" Converting data to percent BOLD signal change ..."); Matrix meanimg = convert_to_pbsc(tmpData); meanR = meanimg.Row(1); message(" done" << endl); } else{ if(opts.remove_meanvol.value()) { message(string(" Removing mean image ...")); meanR = mean(tmpData); tmpData = remmean(tmpData); message(" done" << endl); } else meanR=ones(1,tmpData.Ncols()); } if(opts.remove_meantc.value()){ meanC = mean(tmpData,2); tmpData = remmean(tmpData,2); } //convert to power spectra if(opts.pspec.value()){ message(" Converting data to powerspectra ..."); tmpData = calc_FFT(tmpData); message(" done" << endl); } //switch dimension in case temporal ICA is required if(opts.temporal.value()){ message(string(" Switching dimensions for temporal ICA") << endl); tmpData = tmpData.t(); Matrix tmp; tmp = meanC; meanC = meanR.t(); meanR = tmp.t(); message(" Data size : " << Data.Nrows() << " x " << Data.Ncols() <1) tmpT2 |= tmpT3; if(mean(tmpS2,1).AsScalar()<0){ tmpT2*=-1.0; tmpS2*=-1.0; } add_Tmodes(tmpT2); add_Smodes(tmpS2); } } else{ Tmodes.clear(); Smodes.clear(); for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){ tmpT3 << tmp.Column(ctr); add_Tmodes(tmpT3); } } if(opts.approach.value()!=string("concat")){ //add GLM OLS fit dbgmsg(string(" GLM fitting ") << endl); if(Tdes.Storage()){ Matrix alltcs = Tmodes.at(0).Column(1); for(int ctr=1; ctr < (int)Tmodes.size();ctr++) alltcs|=Tmodes.at(ctr).Column(1); if((alltcs.Nrows()==Tdes.Nrows())&&(Tdes.Nrows()>Tdes.Ncols())) glmT.olsfit(alltcs,Tdes,Tcon); } if(Sdes.Storage()){ Matrix alltcs = Smodes.at(0); for(int ctr=1; ctr < (int)Smodes.size();ctr++) alltcs|=Smodes.at(ctr); if((alltcs.Nrows()==Sdes.Nrows())&&(Sdes.Nrows()>Sdes.Ncols()&&alltcs.Nrows()>2)) glmS.olsfit(alltcs,Sdes,Scon); } } // else{ // dbgmsg(string(" Bypassing krfac ") << endl); // add_Tmodes(tmp); // add_Smodes(tmpS); // } dbgmsg(string("END: set_TSmode")); } void MelodicData::setup() { numfiles = (int)opts.inputfname.value().size(); setup_misc(); if(opts.filtermode){ // basic setup for filtering only Data = process_file(opts.inputfname.value().at(0)); } else{ if((numfiles > 1) && (opts.approach.value()==string("defl") || opts.approach.value()==string("symm"))) opts.approach.set_T("tica"); Matrix alldat, tmpData; bool tmpvarnorm = opts.varnorm.value(); if(numfiles > 1 && opts.joined_vn.value()){ opts.varnorm.set_T(false); } alldat = process_file(opts.inputfname.value().at(0), numfiles) / numfiles; if(opts.pca_dim.value() > alldat.Nrows()-2){ cerr << "ERROR:: too many components selected \n\n"; exit(2); } if(opts.debug.value()) save4D(alldat,string("preproc_dat") + num2str(1)); for(int ctr = 1; ctr < numfiles; ctr++){ tmpData = process_file(opts.inputfname.value().at(ctr), numfiles) / numfiles; if(opts.debug.value()) save4D(tmpData,string("preproc_dat") + num2str(ctr+1)); if(tmpData.Ncols() == alldat.Ncols() && tmpData.Nrows() == alldat.Nrows()) alldat += tmpData; else{ if(opts.approach.value()==string("tica")){ cerr << "ERROR:: data dimensions do not match, TICA not possible \n\n"; exit(2); } if(tmpData.Ncols() == alldat.Ncols()){ int mindim = min(alldat.Nrows(),tmpData.Nrows()); alldat = alldat.Rows(1,mindim); tmpData = tmpData.Rows(1,mindim); alldat += tmpData; } else message("Data dimensions do not match - ignoring "+opts.inputfname.value().at(ctr) << endl); } } //update mask if(opts.update_mask.value()){ message("Excluding voxels with constant value ..."); update_mask(Mask, alldat); message(" done" << endl); } if((numfiles > 1 ) && opts.joined_vn.value() && tmpvarnorm){ //variance - normalisation message(endl<<"Normalising jointly by voxel-wise variance ..."); stdDev = varnorm(alldat,alldat.Nrows(),3.1); stdDevi = pow(stdDev,-1); message(" done" << endl); } if(numfiles>1) message(endl << "Initial data size : "<0) order += param.Ncols(); // cerr << "here2" << endl; if(opts.pca_dim.value() == 0){ opts.pca_dim.set_T(order); PPCA=tmpPPCA; } if(opts.pca_dim.value() < 0){ opts.pca_dim.set_T(min(order,-1*opts.pca_dim.value())); PPCA=tmpPPCA; } order = opts.pca_dim.value(); if(opts.debug.value()) message(endl << "Model order : "<0){ Matrix tmpPscales; tmpPscales = param.t() * alldat; paramS = stdev(tmpPscales.t()); calc_white(pcaE, pcaD, order, param, paramS, whiteMatrix, dewhiteMatrix); }else calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix); if(opts.debug.value()){ outMsize("pcaE",pcaE); saveascii(pcaE,"pcaE"); outMsize("pcaD",pcaD); saveascii(pcaD,"pcaD"); outMsize("AdjEV",AdjEV); saveascii(AdjEV,"AdjEV"); outMsize("PercEV",PercEV); saveascii(PercEV,"PercEV"); outMsize("tmpPPCA",tmpPPCA); saveascii(tmpPPCA,"tmpPPCA"); outMsize("whiteMatrix",whiteMatrix); saveascii(whiteMatrix,"whiteMatrix"); outMsize("dewhiteMatrix",dewhiteMatrix); saveascii(dewhiteMatrix,"dewhiteMatrix"); cerr << "Order: " << order << endl; } EV = AdjEV; EVP = PercEV; if(numfiles == 1){ Data = alldat; Matrix tmp = IdentityMatrix(Data.Nrows()); DWM.push_back(tmp); WM.push_back(tmp); } else { //cerr << "here" << endl; for(int ctr = 0; ctr < numfiles; ctr++){ tmpData = process_file(opts.inputfname.value().at(ctr), numfiles); if(opts.joined_vn.value() && tmpvarnorm){ tmpData=SP(tmpData,pow(ones(tmpData.Nrows(),1)*stdDev,-1)); } // whiten (separate / joint) Matrix newWM,newDWM; if(!opts.joined_whiten.value()){ message(" Individual whitening in a " << order << " dimensional subspace " << endl); std_pca(tmpData, RXweight, Corr, pcaE, pcaD); calc_white(pcaE, pcaD, order, newWM, newDWM); }else{ if(!opts.dr_pca.value()){ std_pca(whiteMatrix*tmpData, RXweight, Corr, pcaE, pcaD); calc_white(pcaE, pcaD, order, newWM, newDWM); newDWM=(dewhiteMatrix*newDWM); newWM=(newWM*whiteMatrix); } else{ if(opts.debug.value()) message(" --mod_pca "); Matrix tmp1, tmp2; tmp1 = whiteMatrix * alldat; tmp1 = remmean(tmp1,2) * tmpData.t(); tmp2 = pinv(tmp1.t()).t(); std_pca(tmp1 * tmpData, RXweight, Corr, pcaE, pcaD); calc_white(pcaE, pcaD, order, newWM, newDWM); newDWM=(tmp2*newDWM); newWM=(newWM * tmp1); } } DWM.push_back(newDWM); WM.push_back(newWM); tmpData = newWM * tmpData; //concatenate Data if(Data.Storage() == 0) Data = tmpData; else Data &= tmpData; } } opts.varnorm.set_T(tmpvarnorm); message(endl << " Data size : "<""){ read_volume(background,opts.bgimage.value()); if(!samesize(Mean,background)){ cerr << "ERROR:: background image and data have different dimensions \n\n"; exit(2); } }else{ background = Mean; } if(!samesize(Mean,Mask)){ cerr << "ERROR:: mask and data have different dimensions \n\n"; exit(2); } //reset mean Mean *= 0; //set up weighting if(opts.segment.value().length()>0){ create_RXweight(); } //seed the random number generator double tmptime = time(NULL); if ( opts.seed.value() != -1 ) { tmptime = opts.seed.value(); } srand((unsigned int) tmptime); if(opts.paradigmfname.value().length()>0){ message(" Use columns in " << opts.paradigmfname.value() << " for PCA initialisation" <0) Tdes = read_ascii_matrix(opts.fn_Tdesign.value()); if(opts.fn_Sdesign.value().length()>0) Sdes = read_ascii_matrix(opts.fn_Sdesign.value()); if(opts.fn_Tcon.value().length()>0) Tcon = read_ascii_matrix(opts.fn_Tcon.value()); if(opts.fn_Scon.value().length()>0) Scon = read_ascii_matrix(opts.fn_Scon.value()); if(opts.fn_TconF.value().length()>0) TconF = read_ascii_matrix(opts.fn_TconF.value()); if(opts.fn_SconF.value().length()>0) SconF = read_ascii_matrix(opts.fn_SconF.value()); if(numfiles>1 && Sdes.Storage() == 0){ Sdes = ones(numfiles,1); if(Scon.Storage() == 0){ Scon = ones(1,1); Scon &= -1*Scon; } } Tdes = remmean(Tdes,1); } void MelodicData::save() { //check for temporal ICA if(opts.temporal.value()){ message(string("temporal ICA: transform back the data ... ")); Matrix tmpIC = mixMatrix.t(); mixMatrix=IC.t(); IC=tmpIC; unmixMatrix=pinv(mixMatrix); Data = Data.t(); tmpIC = meanC; meanC = meanR.t(); meanR = tmpIC.t(); // whiteMatrix = whiteMatrix.t; // dewhiteMatrix = dewhiteMatrix.t(); message(string("done") << endl); opts.temporal.set_T(false); // Do not switch again! } message(endl << "Writing results to : " << endl); //Output IC if((IC.Storage()>0)&&(opts.output_origIC.value())&&(after_mm==false)) save4D(IC,opts.outputfname.value() + "_oIC"); //Output IC -- adjusted for noise if(IC.Storage()>0){ volume4D tempVol; //Matrix ICadjust; if(after_mm){ save4D(IC,opts.outputfname.value() + "_IC"); // ICadjust = IC; } else{ Matrix resids = stdev(Data - mixMatrix * IC); for(int ctr=1;ctr<=resids.Ncols();ctr++) if(resids(1,ctr) < 0.05) resids(1,ctr)=1; // stdNoisei = pow(stdev(Data - mixMatrix * IC)* // std::sqrt((float)(Data.Nrows()-1))/ // std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1); stdNoisei = pow(resids* std::sqrt((float)(Data.Nrows()-1))/ std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1); ColumnVector diagvals; diagvals=pow(diag(unmixMatrix*unmixMatrix.t()),-0.5); save4D(SP(IC,diagvals*stdNoisei),opts.outputfname.value() + "_IC"); } if(opts.output_origIC.value()) save4D(stdNoisei,string("Noise_stddev_inv")); } //Output T- & S-modes save_Tmodes(); save_Smodes(); //Output mixMatrix if(mixMatrix.Storage()>0){ saveascii(expand_mix(), opts.outputfname.value() + "_mix"); mixFFT=calc_FFT(expand_mix(), opts.logPower.value()); saveascii(mixFFT,opts.outputfname.value() + "_FTmix"); } //Output PPCA if(PPCA.Storage()>0) saveascii(PPCA, opts.outputfname.value() + "_PPCA"); //Output ICstats if(ICstats.Storage()>0) saveascii(ICstats,opts.outputfname.value() + "_ICstats"); //Output unmixMatrix if(opts.output_unmix.value() && unmixMatrix.Storage()>0) saveascii(unmixMatrix,opts.outputfname.value() + "_unmix"); //Output Mask message(" "<< logger.appendDir("mask") <0 && meanR.Storage()>0){ saveascii(meanR,opts.outputfname.value() + "_meanR"); saveascii(meanC,opts.outputfname.value() + "_meanC"); } //Output white if(opts.output_white.value() && whiteMatrix.Storage()>0&& dewhiteMatrix.Storage()>0){ saveascii(whiteMatrix,opts.outputfname.value() + "_white"); saveascii(dewhiteMatrix,opts.outputfname.value() + "_dewhite"); Matrix tmp; tmp=calc_FFT(dewhiteMatrix, opts.logPower.value()); saveascii(tmp,opts.outputfname.value() + "_FTdewhite"); } //Output PCA if(opts.output_pca.value() && pcaD.Storage()>0&&pcaE.Storage()>0){ saveascii(pcaE,opts.outputfname.value() + "_pcaE"); saveascii((Matrix) diag(pcaD),opts.outputfname.value() + "_pcaD"); Matrix PCAmaps; if(whiteMatrix.Ncols()==Data.Ncols()) PCAmaps = dewhiteMatrix.t(); else PCAmaps = whiteMatrix * Data; save4D(PCAmaps,opts.outputfname.value() + "_pca"); } message("...done" << endl); } //void save() int MelodicData::remove_components() { message("Reading " << opts.filtermix.value() << endl) mixMatrix = read_ascii_matrix(opts.filtermix.value()); if (mixMatrix.Storage()<=0) { cerr <<" Please specify the mixing matrix correctly" << endl; exit(2); } unmixMatrix = pinv(mixMatrix); IC = unmixMatrix * Data; string tmpstr; tmpstr = opts.filter.value(); Matrix noiseMix; Matrix noiseIC; int ctr=0; char *p; char t[1024]; const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?"; message("Filtering the data..."); strcpy(t, tmpstr.c_str()); p=strtok(t,discard); ctr = atoi(p); if(ctr>0 && ctr<=mixMatrix.Ncols()){ message(" "<< ctr ); noiseMix = mixMatrix.Column(ctr); noiseIC = IC.Row(ctr).t(); } else{ cerr << endl<< "component number "<0 && ctr<=mixMatrix.Ncols()){ message(" "<0) newData = newData + ones(newData.Nrows(),1)*meanR; volume4D tmp; read_volume4D(tmp,opts.inputfname.value().at(0)); tmp.setmatrix(newData,Mask); save_volume4D(tmp,logger.appendDir(opts.outputfname.value() + "_ICAfiltered")); return 0; } // int remove_components() void MelodicData::create_RXweight() { message("Reading the weights for the covariance R_X from file "<< opts.segment.value() << endl); volume4D tmpRX; read_volume4D(tmpRX,opts.segment.value()); RXweight = tmpRX.matrix(Mask); } void MelodicData::est_smoothness() { if(Resels == 0){ string SM_path = opts.binpath + "smoothest"; string Mask_fname = logger.appendDir("mask"); if(opts.segment.value().length()>0){ Mask_fname = opts.segment.value(); } // Setup external call to smoothest: char callSMOOTHESTstr[1000]; ostrstream osc(callSMOOTHESTstr,1000); osc << SM_path << " -d " << data_dim() << " -r " << opts.inputfname.value().at(0) << " -m " << Mask_fname << " > " << logger.appendDir("smoothest") << '\0'; message(" Calling Smoothest: " << callSMOOTHESTstr << endl); system(callSMOOTHESTstr); //read back the results ifstream in; string str; Resels = 1.0; in.open(logger.appendDir("smoothest").c_str(), ios::in); if(in>0){ for(int ctr=1; ctr<7; ctr++) in >> str; in.close(); if(str!="nan") Resels = atof(str.c_str()); } } } unsigned long MelodicData::standardise(volume& mask, volume4D& R) { unsigned long count = 0; int M=R.tsize(); for (int z=mask.minz(); z<=mask.maxz(); z++) { for (int y=mask.miny(); y<=mask.maxy(); y++) { for (int x=mask.minx(); x<=mask.maxx(); x++) { if( mask(x,y,z) > 0.5) { count ++; if( M > 2 ) { // For each voxel // calculate mean and standard deviation... double Sx = 0.0, SSx = 0.0; for ( int t = 0; t < M; t++ ) { float R_it = R(x,y,z,t); Sx += R_it; SSx += (R_it)*(R_it); } float mean = Sx / M; float sdsq = (SSx - ((Sx)*(Sx) / M)) / (M - 1) ; if (sdsq<=0) { // trap for differences between mask and invalid data mask(x,y,z)=0; count--; } else { // ... and use them to standardise to N(0, 1). for ( unsigned short t = 0; t < M; t++ ) { R(x,y,z,t) = (R(x,y,z,t) - mean) / sqrt(sdsq); } } } } } } } return count; } float MelodicData::est_resels(volume4D R, volume mask) { message(" Estimating data smoothness ... "); unsigned long mask_volume = standardise(mask, R); int dof = R.tsize(); unsigned long N = mask_volume; // MJ additions to make it cope with 2D images bool usez = true; if (R.zsize() <= 1) { usez = false; } enum {X = 0, Y, Z}; float SSminus[3] = {0, 0, 0}, S2[3] = {0, 0, 0}; int zstart=1; if (!usez) zstart=0; for ( unsigned short z = zstart; z < R.zsize() ; z++ ) for ( unsigned short y = 1; y < R.ysize() ; y++ ) for ( unsigned short x = 1; x < R.xsize() ; x++ ) // Sum over N if( (mask(x, y, z)>0.5) && (mask(x-1, y, z)>0.5) && (mask(x, y-1, z)>0.5) && ( (!usez) || (mask(x, y, z-1)>0.5) ) ) { N++; for ( unsigned short t = 0; t < R.tsize(); t++ ) { // Sum over M SSminus[X] += R(x, y, z, t) * R(x-1, y, z, t); SSminus[Y] += R(x, y, z, t) * R(x, y-1, z, t); if (usez) SSminus[Z] += R(x, y, z, t) * R(x, y, z-1, t); S2[X] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x-1, y, z, t)*R(x-1, y, z, t)); S2[Y] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x, y-1, z, t)*R(x, y-1, z, t)); if (usez) S2[Z] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x, y, z-1, t)*R(x, y, z-1, t)); } } float norm = 1.0/(float) N; float v = dof; // v - degrees of freedom (nu) if(R.tsize() > 1) { norm = (v - 2) / ((v - 1) * N * R.tsize()); } // for extreme smoothness if (SSminus[X]>=0.99999999*S2[X]) SSminus[X]=0.99999*S2[X]; if (SSminus[Y]>=0.99999999*S2[Y]) SSminus[Y]=0.99999*S2[Y]; if (usez) if (SSminus[Z]>=0.99999999*S2[Z]) SSminus[Z]=0.99999*S2[Z]; // Convert to sigma squared float sigmasq[3] = {0,0,0}; sigmasq[X] = -1.0 / (4 * log(fabs(SSminus[X]/S2[X]))); sigmasq[Y] = -1.0 / (4 * log(fabs(SSminus[Y]/S2[Y]))); if (usez) { sigmasq[Z] = -1.0 / (4 * log(fabs(SSminus[Z]/S2[Z]))); } // Convert to full width half maximum float FWHM[3] = {0,0,0}; FWHM[X] = sqrt(8 * log(2) * sigmasq[X]); FWHM[Y] = sqrt(8 * log(2) * sigmasq[Y]); if (usez) { FWHM[Z] = sqrt(8 * log(2) * sigmasq[Z]); } float resels = FWHM[X] * FWHM[Y]; if (usez) resels *= FWHM[Z]; message(" done " <& theMask) { if(opts.use_mask.value() && opts.maskfname.value().size()>0){ // mask provided read_volume(theMask,opts.maskfname.value()); message("Mask provided : " << opts.maskfname.value()< /dev/null " << '\0'; // message(" Calling BET: " << callBETstr << endl); // system(callBETstr); string tmpstr = BET_path + string(" ") + Mean_fname + string(" ") + BET_outputfname + string(" ") + BET_optarg + string(" > /dev/null "); system(tmpstr.c_str()); // read back the Mask file read_volume(theMask,Mask_fname); // clean /tmp char callRMstr[1000]; ostrstream osc(callRMstr,1000); osc << "rm " << string(Mean_fname) <<"* " << '\0'; system(callRMstr); message("done" << endl); } else{ if(opts.use_mask.value()){ //just threshold the Mean message("Create mask ... "); float Mmin, Mmax, Mtmp; Mmin = Mean.min(); Mmax = Mean.max(); theMask = binarise(Mean,Mmin + opts.threshold.value()* (Mmax-Mmin),Mmax); Mtmp = Mmin + opts.threshold.value()* (Mmax-Mmin); message("done" << endl); } else{ //well, don't threshold then theMask = Mean; theMask = 1.0; } } } if(opts.remove_endslices.value()){ // just in case mc introduced something nasty message(" Deleting end slices" << endl); for(int ctr1=theMask.miny(); ctr1<=theMask.maxy(); ctr1++){ for(int ctr2=theMask.minx(); ctr2<=theMask.maxx(); ctr2++){ theMask(ctr2,ctr1,Mask.minz()) = 0.0; theMask(ctr2,ctr1,Mask.maxz()) = 0.0; } } } } //void create_mask() void MelodicData::sort() { int numComp = mixMatrix.Ncols(), numVox = IC.Ncols(), numTime = mixMatrix.Nrows(), i,j; //flip IC maps to be positive (on max) //flip Subject/Session modes to be positive (on average) //flip time courses accordingly for(int ctr_i = 1; ctr_i <= numComp; ctr_i++) if(IC.Row(ctr_i).MaximumAbsoluteValue()>IC.Row(ctr_i).Maximum()){ flipres(ctr_i); } message("Sorting IC maps" << endl); Matrix tmpscales, tmpICrow, tmpMIXcol; if(numfiles > 1 && opts.approach.value()==string("tica")){ set_TSmode(); Matrix allmodes = Smodes.at(0); for(int ctr = 1; ctr < (int)Smodes.size();++ctr) allmodes |= Smodes.at(ctr); tmpscales = median(allmodes).t(); } else { // re-order wrt standard deviation of IC maps tmpscales = stdev(IC,2); } ICstats = tmpscales; double max_val, min_val = tmpscales.Minimum()-1; for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){ max_val = tmpscales.Maximum2(i,j); ICstats(ctr_i,1)=max_val; tmpICrow = IC.Row(ctr_i); tmpMIXcol = mixMatrix.Column(ctr_i); IC.SubMatrix(ctr_i,ctr_i,1,numVox) = IC.SubMatrix(i,i,1,numVox); mixMatrix.SubMatrix(1,numTime,ctr_i,ctr_i) = mixMatrix.SubMatrix(1,numTime,i,i); IC.SubMatrix(i,i,1,numVox) = tmpICrow.SubMatrix(1,1,1,numVox); mixMatrix.SubMatrix(1,numTime,i,i) = tmpMIXcol.SubMatrix(1,numTime,1,1); tmpscales(i,1)=tmpscales(ctr_i,1); tmpscales(ctr_i,1)=min_val; } ICstats /= ICstats.Column(1).Sum(); ICstats *= 100; if(EVP.Storage()>0){ tmpscales = ICstats.Column(1).AsMatrix(ICstats.Nrows(),1) * EVP(1,numComp); ICstats |= tmpscales; } if(Data.Storage()>0&&stdDev.Storage()>0){ Matrix copeP(tmpscales), copeN(tmpscales); Matrix max_ICs(tmpscales), min_ICs(tmpscales); for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){ int i,j; max_ICs(ctr_i,1) = IC.Row(ctr_i).Maximum2(i,j); copeP(ctr_i,1) = std::abs((pinv(mixMatrix)* Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100* (mixMatrix.Column(ctr_i).Maximum()- mixMatrix.Column(ctr_i).Minimum())/meanR(1,j)); min_ICs(ctr_i,1) = IC.Row(ctr_i).Minimum2(i,j); copeN(ctr_i,1) = -1.0*std::abs((pinv(mixMatrix)* Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100* (mixMatrix.Column(ctr_i).Maximum()- mixMatrix.Column(ctr_i).Minimum())/meanR(1,j)); } ICstats |= copeP; ICstats |= copeN; } mixFFT=calc_FFT(expand_mix(), opts.logPower.value()); unmixMatrix = pinv(mixMatrix); } void MelodicData::reregress() { if((numfiles > 1)){ } } void MelodicData::status(const string &txt) { cout << "MelodicData Object " << txt << endl; if(Data.Storage()>0){cout << "Data: " << Data.Nrows() <<"x" << Data.Ncols() << endl;}else{cout << "Data empty " <0){cout << "pcaE: " << pcaE.Nrows() <<"x" << pcaE.Ncols() << endl;}else{cout << "pcaE empty " <0){cout << "pcaD: " << pcaD.Nrows() <<"x" << pcaD.Ncols() << endl;}else{cout << "pcaD empty " <0){cout << "white: " << whiteMatrix.Nrows() <<"x" << whiteMatrix.Ncols() << endl;}else{cout << "white empty " <0){cout << "dewhite: " << dewhiteMatrix.Nrows() <<"x" << dewhiteMatrix.Ncols() << endl;}else{cout << "dewhite empty " <0){cout << "mix: " << mixMatrix.Nrows() <<"x" << mixMatrix.Ncols() << endl;}else{cout << "mix empty " <0){cout << "unmix: " << unmixMatrix.Nrows() <<"x" << unmixMatrix.Ncols() << endl;}else{cout << "unmix empty " <0){cout << "IC: " << IC.Nrows() <<"x" << IC.Ncols() << endl;}else{cout << "IC empty " <