/* MELODIC - Multivariate exploratory linear optimized decomposition into independent components melhlprfns.cc - misc functions Christian F. Beckmann, FMRIB Image Analysis Group Copyright (C) 1999-2008 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "melhlprfns.h" #include "libprob.h" #include "miscmaths/miscprob.h" #include "miscmaths/t2z.h" #include "miscmaths/f2z.h" namespace Melodic{ void update_mask(volume& mask, Matrix& Data) { Matrix DStDev=stdev(Data); volume4D tmpMask, RawData; tmpMask.setmatrix(DStDev,mask); RawData.setmatrix(Data,mask); float tMmax; volume tmpMask2; tmpMask2 = tmpMask[0]; tMmax = tmpMask2.max(); double st_mean = DStDev.Sum()/DStDev.Ncols(); double st_std = stdev(DStDev.t()).AsScalar(); mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std,(float) 0.01*st_mean),tMmax); Data = RawData.matrix(mask); } void del_vols(volume4D& in, int howmany) { for(int ctr=1; ctr<=howmany; ctr++){ in.deletevolume(ctr); } } Matrix calc_FFT(const Matrix& Mat, const bool logpwr) { Matrix res; for(int ctr=1; ctr <= Mat.Ncols(); ctr++){ ColumnVector tmpCol; tmpCol=Mat.Column(ctr); ColumnVector FtmpCol_real; ColumnVector FtmpCol_imag; ColumnVector tmpPow; if(tmpCol.Nrows()%2 != 0){ Matrix empty(1,1); empty=0; tmpCol &= empty; } RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag); tmpPow = pow(FtmpCol_real,2)+pow(FtmpCol_imag,2); tmpPow = tmpPow.Rows(2,tmpPow.Nrows()); if(logpwr) tmpPow = log(tmpPow); if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;} } return res; } //Matrix calc_FFT() Matrix smoothColumns(const Matrix& inp) { Matrix temp(inp); int ctr1 = temp.Nrows(); Matrix temp2(temp); temp2=0; temp = temp.Row(4) & temp.Row(3) & temp.Row(2) & temp & temp.Row(ctr1-1) & temp.Row(ctr1-2) &temp.Row(ctr1-3); double kern[] ={0.0045 , 0.055, 0.25, 0.4, 0.25, 0.055, 0.0045}; double fac = 0.9090909; for(int cc=1;cc<=temp2.Ncols();cc++){ for(int cr=1;cr<=temp2.Nrows();cr++){ temp2(cr,cc) = fac*( kern[0] * temp(cr,cc) + kern[1] * temp(cr+1,cc) + kern[2] * temp(cr+2,cc) + kern[3] * temp(cr+3,cc) + kern[4] * temp(cr+4,cc) + kern[5] * temp(cr+5,cc) + kern[6] * temp(cr+6,cc)); } } return temp2; } //Matrix smoothColumns() Matrix convert_to_pbsc(Matrix& inp) { Matrix meanimg; meanimg = mean(inp); float eps = 0.00001; for(int ctr=1; ctr <= inp.Ncols(); ctr++){ if(meanimg(1,ctr) < eps) meanimg(1,ctr) = eps; } for(int ctr=1; ctr <= inp.Nrows(); ctr++){ Matrix tmp; tmp << inp.Row(ctr); inp.Row(ctr) << 100 * SP((tmp - meanimg),pow(meanimg,-1)); } inp = remmean(inp); return meanimg; } //void convert_to_pbsc RowVector varnorm(Matrix& in, int dim, float level) { Matrix Corr; Corr = calc_corr(in); RowVector out; out = varnorm(in,Corr,dim,level); return out; } //RowVector varnorm void varnorm(Matrix& in, const RowVector& vars) { Matrix tmp = vars; in = SP(in,pow(ones(in.Nrows(),1) * tmp,-1)); } RowVector varnorm(Matrix& in, Matrix& Corr, int dim, float level) { Matrix tmpE, white, dewhite; RowVector tmpD, tmpD2; std_pca(remmean(in,2), Corr, tmpE, tmpD); calc_white(tmpE,tmpD, dim, white, dewhite); Matrix ws = white * in; for(int ctr1 = 1; ctr1<=ws.Ncols(); ctr1++) for(int ctr2 = 1; ctr2<=ws.Nrows(); ctr2++) if(std::abs(ws(ctr2,ctr1)) < level) ws(ctr2,ctr1)=0; tmpD = stdev(in - dewhite*ws); for(int ctr1 = 1; ctr1<=tmpD.Ncols(); ctr1++) if(tmpD(ctr1) < 0.01){ tmpD(ctr1) = 1.0; in.Column(ctr1) = 0.0*in.Column(ctr1); } varnorm(in,tmpD); return tmpD; } //RowVector varnorm Matrix SP2(const Matrix& in, const Matrix& weights, bool econ) { Matrix Res; Res = in; if(econ){ ColumnVector tmp; for(int ctr=1; ctr <= in.Ncols(); ctr++){ tmp = in.Column(ctr); tmp = tmp * weights(1,ctr); Res.Column(ctr) = tmp; } } else{ Res = ones(in.Nrows(),1)*weights.Row(1); Res = SP(in,Res); } return Res; } //Matrix SP Matrix corrcoef(const Matrix& in1, const Matrix& in2){ Matrix tmp = in1; tmp |= in2; Matrix out; out=MISCMATHS::corrcoef(tmp,0); return out.SubMatrix(1,in1.Ncols(),in1.Ncols()+1,out.Ncols()); } Matrix corrcoef(const Matrix& in1, const Matrix& in2, const Matrix& part){ Matrix tmp1 = in1, tmp2 = in2, out; if(part.Storage()){ tmp1 = tmp1 - part * pinv(part) * tmp1; tmp2 = tmp2 - part * pinv(part) * tmp2; } out = corrcoef(tmp1,tmp2); return out; } Matrix calc_corr(const Matrix& in, bool econ) { Matrix Res; Res = zeros(in.Nrows(),in.Nrows()); if(econ){ ColumnVector tmp; for(int ctr=1; ctr <= in.Ncols(); ctr++){ tmp = in.Column(ctr); tmp = tmp - mean(tmp).AsScalar(); Res += (tmp * tmp.t()) / in.Ncols(); } } else Res = cov(in.t()); return Res; } //Matrix calc_corr Matrix calc_corr(const Matrix& in, const Matrix& weights, bool econ) { Matrix Res; Res = zeros(in.Nrows(),in.Nrows()); Matrix localweights; if(weights.Storage() == 0) localweights = ones(1,in.Ncols()); else localweights = weights; if(econ){ ColumnVector tmp; for(int ctr=1; ctr <= in.Ncols(); ctr++){ tmp = in.Column(ctr); tmp = tmp - mean(tmp).AsScalar(); tmp = tmp * localweights(1,ctr); Res += (tmp * tmp.t()) / in.Ncols(); } } else{ Res = SP2(in,localweights); Res = calc_corr(Res, 0); } return Res; } //Matrix calc_corr float calc_white(const Matrix& tmpE, const RowVector& tmpD, const RowVector& PercEV, int dim, Matrix& param, Matrix& paramS, Matrix& white, Matrix& dewhite) { // tmpD2= tmpD | tmpPD.AsRow().Columns(tmpPE.Ncols()-param.Ncols()+1,tmpPE.Ncols()); // cerr << tmpPD.AsRow().Columns(tmpPE.Ncols()-param.Ncols()+1,tmpPE.Ncols()) << endl; // // Matrix tmpPE; // tmpPE = SP(param,ones(param.Nrows(),1)*pow(stdev(param,1)*std::sqrt((float)param.Nrows()),-1)); // RE |= tmpPE; // RowVector tmpD2; // tmpD2 = tmpD | stdev(param,1).AsRow()*std::sqrt((float)param.Nrows()); // RD << abs(diag(tmpD2.t())); // RD << RD.SymSubMatrix(N-dim+1,N); Matrix RE; DiagonalMatrix RD; int N = tmpE.Ncols(); dim = std::min(dim,N); // cerr << stdev(param) << endl; RE = tmpE.Columns(std::min(N-dim+1+param.Ncols(),N-2),N); RE |= param; // cerr << paramS.Nrows() << " x " << paramS.Ncols() << endl; // cerr << paramS << endl; RowVector tmpD2; tmpD2 = tmpD | pow(paramS,2).AsRow(); RD << abs(diag(tmpD2.t())); // cerr << " " <0) Corr << calc_corr(Mat, weights); else Corr << calc_corr(Mat); SymmetricMatrix tmp; tmp << Corr; DiagonalMatrix tmpD; EigenValues(tmp,tmpD,evecs); evals = tmpD.AsRow(); } //void std_pca void std_pca(const Matrix& Mat, Matrix& Corr, Matrix& evecs, RowVector& evals) { Matrix weights; std_pca(Mat,weights,Corr,evecs,evals); } //void std_pca void em_pca(const Matrix& Mat, Matrix& evecs, RowVector& evals, int num_pc, int iter) { Matrix guess; guess = normrnd(Mat.Nrows(),num_pc); em_pca(Mat,guess,evecs,evals,num_pc,iter); } //void em_pca void em_pca(const Matrix& Mat, Matrix& guess, Matrix& evecs, RowVector& evals, int num_pc, int iter) { Matrix C; if(guess.Ncols() < num_pc){ C=normrnd(Mat.Nrows(),num_pc); C.Columns(1,guess.Ncols()) = guess; } else C = guess; Matrix tmp, tmp2; for(int ctr=1; ctr <= iter; ctr++){ // E-Step tmp = C.t()*C; tmp = tmp.i(); tmp = tmp * C.t(); tmp = tmp * Mat; // M-Step tmp2 = tmp * tmp.t(); tmp2 = tmp2.i(); tmp2 = Mat*tmp.t()*tmp2; C = tmp2; } symm_orth(C); Matrix Evc, tmpC; RowVector Evl; tmp = C.t() * Mat; std_pca(tmp,tmpC,Evc,Evl); evals = Evl; evecs = C * Evc; } //void em_pca float rankapprox(const Matrix& Mat, Matrix& cols, Matrix& rows, int dim) { Matrix Corr, Evecs, tmpWM, tmpDWM, tmp; RowVector Evals; std_pca(Mat.t(), Corr, Evecs, Evals); calc_white(Corr, dim, tmpWM, tmpDWM); tmp = tmpWM * Mat.t(); cols = tmp.t(); rows << tmpDWM; float res; Evals=fliplr(Evals); res = sum(Evals.Columns(1,dim),2).AsScalar()/sum(Evals,2).AsScalar()*100; return res; } // rankapprox RowVector krfact(const Matrix& Mat, Matrix& cols, Matrix& rows) { Matrix out; RowVector res(Mat.Ncols()); for(int ctr1 = 1; ctr1 <= Mat.Ncols(); ctr1++){ Matrix tmpVals(cols.Nrows(),rows.Nrows()); for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++) tmpVals.Column(ctr2) << Mat.SubMatrix(cols.Nrows() * (ctr2 - 1) + 1,cols.Nrows()*ctr2 ,ctr1,ctr1); Matrix tmpcols, tmprows; res(ctr1) =rankapprox(tmpVals, tmpcols, tmprows); cols.Column(ctr1) = tmpcols; rows.Column(ctr1) = tmprows; } return res; } // krfact RowVector krfact(const Matrix& Mat, int colnum, Matrix& cols, Matrix& rows) { RowVector res; cols = zeros(colnum,Mat.Ncols()); rows = zeros(int(Mat.Nrows() / colnum),Mat.Ncols()); res = krfact(Mat,cols,rows); return res; } // krfact Matrix krprod(const Matrix& cols, const Matrix& rows) { Matrix out; out = zeros(cols.Nrows()*rows.Nrows(),cols.Ncols()); for(int ctr1 = 1; ctr1 <= cols.Ncols(); ctr1++) for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++) { out.SubMatrix(cols.Nrows()*(ctr2-1)+1,cols.Nrows()*ctr2,ctr1,ctr1) << cols.Column(ctr1) * rows(ctr2,ctr1); } return out; } // krprod Matrix krapprox(const Matrix& Mat, int size_cols, int dim) { Matrix out, cols, rows; out = zeros(Mat.Nrows(), Mat.Ncols()); cols = zeros(size_cols,Mat.Ncols()); rows = zeros(int(Mat.Nrows() / size_cols), Mat.Ncols()); krfact(Mat,cols,rows); out = krprod(cols, rows); return out; } // krapprox void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2, RowVector& out3, int& out4, int num_vox, float resels) { RowVector AdjEV; AdjEV << in.AsRow(); AdjEV = AdjEV.Columns(3,AdjEV.Ncols()); AdjEV = AdjEV.Reverse(); RowVector CircleLaw; int NumVox = (int) floor(num_vox/(2.5*resels)); CircleLaw = Feta(int(AdjEV.Ncols()), NumVox); for(int ctr=1;ctr<=CircleLaw.Ncols(); ctr++){ if(CircleLaw(ctr)<5*10e-10){CircleLaw(ctr) = 5*10e-10;} } /* float slope; slope = CircleLaw.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() - int(AdjEV.Ncols()/4)).Sum() / AdjEV.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() - int(AdjEV.Ncols()/4)).Sum();*/ RowVector PercEV(AdjEV); PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar()); AdjEV << SP(AdjEV,pow(CircleLaw.Columns(1,AdjEV.Ncols()),-1)); SortDescending(AdjEV); int maxEV = 1; float threshold = 0.98; for(int ctr_i = 1; ctr_i < PercEV.Ncols(); ctr_i++){ if((PercEV(ctr_i)=threshold)){maxEV=ctr_i;} } if(maxEV<3){maxEV=PercEV.Ncols()/2;} RowVector NewEV; Matrix temp1; temp1 = abs(AdjEV); NewEV << temp1.SubMatrix(1,1,1,maxEV); AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar()); out1 = AdjEV; out2 = PercEV; out3 = NewEV; out4 = maxEV; } //adj_eigspec void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2) { RowVector AdjEV, PercEV; AdjEV = in.Reverse(); SortDescending(AdjEV); PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar()); AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar()); out1 = AdjEV; out2 = PercEV; } //adj_eigspec RowVector Feta(int n1, int n2) { float nu = (float) n1/n2; float bm = pow((1-sqrt(nu)),2.0); float bp = pow((1+sqrt(nu)),2.0); float lrange = 0.9*bm; float urange = 1.1*bp; RowVector eta(30*n1); float rangestepsize = (urange - lrange) / eta.Ncols(); for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){ eta(ctr_i) = lrange + rangestepsize * (ctr_i); } RowVector teta(10*n1); teta = 0; float stepsize = (bp - bm) / teta.Ncols(); for(int ctr_i = 1; ctr_i <= teta.Ncols(); ctr_i++){ teta(ctr_i) = stepsize*(ctr_i); } RowVector feta(teta); feta = SP(pow(2*M_PI*nu*(teta + bm),-1), pow(SP(teta, bp-bm-teta),0.5)); teta = teta + bm; RowVector claw(eta); claw = 0; for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){ double tmpval = 0.0; for(int ctr_j = 1; ctr_j <= teta.Ncols(); ctr_j++){ if(( double(teta(ctr_j))/double(eta(ctr_i)) )<1) tmpval += feta(ctr_j); } claw(ctr_i) = n1*(1-stepsize*tmpval); } RowVector Res(n1); //invert the CDF Res = 0; for(int ctr_i = 1; ctr_i < eta.Ncols(); ctr_i++){ //Should this be <= instead of floor(claw(ctr_i+1))){ Res(int(floor(claw(ctr_i)))) = eta(ctr_i); } } return Res; } //RowVector Feta RowVector cumsum(const RowVector& Inp) { UpperTriangularMatrix UT(Inp.Ncols()); UT=1.0; RowVector Res; Res = Inp * UT; return Res; } //RowVector cumsum int ppca_dim(const Matrix& in, const Matrix& weights, Matrix& PPCA, RowVector& AdjEV, RowVector& PercEV, Matrix& Corr, Matrix& tmpE, RowVector &tmpD, float resels, string which) { std_pca(in,weights,Corr,tmpE,tmpD); int maxEV = 1; RowVector NewEV; adj_eigspec(tmpD.AsRow(),AdjEV,PercEV,NewEV,maxEV,in.Ncols(),resels); int res; PPCA = ppca_est(NewEV, in.Ncols(),resels); ColumnVector tmp = ppca_select(PPCA, res, maxEV, which); PPCA = tmp | PPCA; return res; } //int ppca_dim int ppca_dim(const Matrix& in, const Matrix& weights, Matrix& PPCA, RowVector& AdjEV, RowVector& PercEV, float resels, string which) { RowVector tmpD; Matrix tmpE; Matrix Corr; int res = ppca_dim(in, weights, PPCA, AdjEV, PercEV, Corr, tmpE, tmpD, resels, which); return res; } //int ppca_dim int ppca_dim(const Matrix& in, const Matrix& weights, float resels, string which) { ColumnVector PPCA; RowVector AdjEV, PercEV; int res = ppca_dim(in,weights,PPCA,AdjEV,PercEV,resels,which); return res; } //int ppca_dim ColumnVector ppca_select(Matrix& PPCAest, int& dim, int maxEV, string which) { RowVector estimators(5); estimators = 1.0; for(int ctr=1; ctr<=PPCAest.Ncols(); ctr++){ PPCAest.Column(ctr) = (PPCAest.Column(ctr) - min(PPCAest.Column(ctr)).AsScalar()) / ( max(PPCAest.Column(ctr)).AsScalar() - min(PPCAest.Column(ctr)).AsScalar()); } int ctr_i = 1; while((ctr_i< PPCAest.Nrows()-1)&& (PPCAest(ctr_i,2) < PPCAest(ctr_i+1,2))&&(ctr_i0.8){ res=int(estimators(2)); PPCA << PPCAest.Column(3); }else{ res = int(estimators(1)); PPCA << PPCAest.Column(2); } if(which == string("lap")){ res = int(estimators(1)); PPCA << PPCAest.Column(2); } if(which == string("bic")){ res = int(estimators(2)); PPCA << PPCAest.Column(3); } if(which == string("mdl")){ res = int(estimators(3)); PPCA << PPCAest.Column(4); } if(which == string("rrn")){ res = int(estimators(4)); PPCA << PPCAest.Column(5); } if(which == string("aic")){ res = int(estimators(5)); PPCA << PPCAest.Column(6); } if(which == string("median")){ RowVector unsorted(estimators); SortAscending(unsorted); ctr_i=1; res=int(unsorted(3)); while(res != int(estimators(ctr_i))) ctr_i++; PPCA << PPCAest.Column(ctr_i); } if(res==0 || which == string("mean")){//median estimator PPCA = mean(PPCAest.Columns(2,6),2); res=int(mean(estimators,2).AsScalar()); } dim = res; return PPCA; } //RowVector ppca_select Matrix ppca_est(const RowVector& eigenvalues, const int N1, const float N2) { Matrix Res; Res = ppca_est(eigenvalues, (int) floor(N1/(2.5*N2))); return Res; } //Matrix ppca_est Matrix ppca_est(const RowVector& eigenvalues, const int N) { RowVector logLambda(eigenvalues); logLambda = log(eigenvalues); int d = logLambda.Ncols(); RowVector k(d); for(int ctr_i = 1; ctr_i <=d; ctr_i++){ k(ctr_i)=ctr_i; } RowVector m(d); m=d*k-0.5*SP(k,k+1); RowVector loggam(d); loggam = 0.5*k.Reverse(); for(int ctr_i = 1; ctr_i <=d; ctr_i++){ loggam(ctr_i)=lgam(loggam(ctr_i)); } loggam = cumsum(loggam); RowVector l_probU(d); l_probU = -log(2)*k + loggam - cumsum(0.5*log(M_PI)*k.Reverse()); RowVector tmp1; tmp1 = -cumsum(eigenvalues).Reverse()+sum(eigenvalues,2).AsScalar(); tmp1(1) = 0.95*tmp1(2); tmp1=tmp1.Reverse(); RowVector tmp2; tmp2 = -cumsum(logLambda).Reverse()+sum(logLambda,2).AsScalar(); tmp2(1)=tmp2(2); tmp2=tmp2.Reverse(); RowVector tmp3; tmp3 = d-k; tmp3(d) = 1.0; RowVector tmp4; tmp4 = SP(tmp1,pow(tmp3,-1)); for(int ctr_i = 1; ctr_i <=d; ctr_i++){ if(tmp4(ctr_i)<0.01){tmp4(ctr_i)=0.01;} if(tmp3(ctr_i)<0.01){tmp3(ctr_i)=0.01;} if(tmp1(ctr_i)<0.01){tmp1(ctr_i)=0.01;} } RowVector l_nu; l_nu = SP(-N/2*(d-k),log(tmp4)); l_nu(d) = 0; RowVector l_lam; l_lam = -(N/2)*cumsum(logLambda); RowVector l_lhood; l_lhood = SP(pow(tmp3,-1),tmp2)-log(SP(pow(tmp3,-1),tmp1)); Matrix t1,t2, t3; UpperTriangularMatrix triu(d); triu = 1.0; for(int ctr_i = 1; ctr_i <= triu.Ncols(); ctr_i++){ triu(ctr_i,ctr_i)=0.0; } t1 = (ones(d,1) * eigenvalues); t1 = SP(triu,t1.t() - t1); t2 = pow(tmp4,-1).t()*ones(1,d); t3 = ones(d,1)*pow(eigenvalues,-1); t2 = SP(triu, t2.t()-t3.t()); for(int ctr_i = 1; ctr_i <= t1.Ncols(); ctr_i++){ for(int ctr_j = 1; ctr_j <= t1.Nrows(); ctr_j++){ if(t1(ctr_j,ctr_i)<=0){t1(ctr_j,ctr_i)=1;} } } for(int ctr_i = 1; ctr_i <= t2.Ncols(); ctr_i++){ for(int ctr_j = 1; ctr_j <= t2.Nrows(); ctr_j++){ if(t2(ctr_j,ctr_i)<=0){t2(ctr_j,ctr_i)=1;} } } t1 = cumsum(sum(log(t1),2).AsRow()); t2 = cumsum(sum(log(t2),2).AsRow()); RowVector l_Az(d); l_Az << (t1+t2); RowVector l_lap; l_lap = l_probU + l_nu +l_Az + l_lam + 0.5*log(2*M_PI)*(m+k)-0.5*log(N)*k; RowVector l_BIC; l_BIC = l_lam + l_nu - 0.5*log(N)*(m+k); RowVector l_RRN; l_RRN = -0.5*N*SP(k,log(SP(cumsum(eigenvalues),pow(k,-1))))+l_nu; RowVector l_AIC; l_AIC = -2*N*SP(tmp3,l_lhood)+ 2*(1+d*k+0.5*(k-1)); l_AIC = -l_AIC; RowVector l_MDL; l_MDL = -N*SP(tmp3,l_lhood)+ 0.5*(1+d*k+0.5*(k-1))*log(N); l_MDL = -l_MDL; Matrix Res; Res = eigenvalues.t(); Res |= l_lap.t(); Res |= l_BIC.t(); Res |= l_MDL.t(); Res |= l_RRN.t(); Res |= l_AIC.t(); return Res; } //Matrix ppca_est ColumnVector acf(const ColumnVector& in, int order) { double meanval; meanval = mean(in).AsScalar(); int tpoints = in.Nrows(); ColumnVector y, res; Matrix X, tmp; y = in.Rows(order+1,tpoints) - meanval; X = zeros(order + 1, order); for(int ctr1 = 1; ctr1 <= order; ctr1++) X.Column(ctr1) = in.Rows(order + 1 - ctr1, tpoints - ctr1) - meanval; tmp = X.t()*X; tmp = tmp.i(); tmp = tmp * X.t(); res << tmp * y; return res; } //ColumnVector acf ColumnVector pacf(const ColumnVector& in, int maxorder) { int tpoint = in.Nrows(); ColumnVector res; res = acf(in, maxorder); for(int ctr1 = 1; ctr1 <= maxorder; ctr1++) if ( res.Column(ctr1).AsScalar() < (1/tpoint) + 2/(float)std::pow(tpoint,0.5)) res.Column(ctr1) = 0; return res; } //ColumnVector pacf Matrix est_ar(const Matrix& Mat, int maxorder) { Matrix res; res = zeros(maxorder, Mat.Ncols()); ColumnVector tmp; for (int ctr = 1; ctr <= Mat.Ncols(); ctr++){ tmp = pacf(Mat.Column(ctr)); res.Column(ctr) = tmp; } return res; } //Matrix est_ar ColumnVector gen_ar(const ColumnVector& in, int maxorder) { float sdev; sdev = stdev(in).AsScalar(); ColumnVector x, arcoeff, scaled; scaled = in / sdev; arcoeff = pacf( scaled, maxorder); x = normrnd(in.Nrows(),1).AsColumn() * sdev; for(int ctr1=2; ctr1 <= in.Nrows(); ctr1++) for(int ctr2 = 1; ctr2 <= maxorder; ctr2++) x(ctr1) = arcoeff(ctr2) * x(std::max(1,int(ctr1-ctr2))) + x(ctr1); return x; } //ColumnVector gen_ar Matrix gen_ar(const Matrix& in, int maxorder) { Matrix res; res = in; ColumnVector tmp; for(int ctr=1; ctr <= in.Ncols(); ctr++){ tmp = in.Column(ctr); res.Column(ctr) = gen_ar(tmp, maxorder); } return res; } //Matrix gen_ar Matrix gen_arCorr(const Matrix& in, int maxorder) { Matrix res; res = zeros(in.Nrows(), in.Nrows()); ColumnVector tmp; for(int ctr=1; ctr<= in.Ncols(); ctr++){ tmp = in.Column(ctr); tmp = gen_ar(tmp, maxorder); res += tmp * tmp.t(); } return res; } //Matrix gen_arCorr void basicGLM::olsfit(const Matrix& data, const Matrix& design, const Matrix& contrasts, int requestedDOF) { beta = zeros(design.Ncols(),1); residu = zeros(1); sigsq = -1.0*ones(1); varcb = -1.0*ones(1); t = zeros(1); z = zeros(1); p=-1.0*ones(1); dof = (int)-1; cbeta = -1.0*ones(1); if(data.Nrows()==design.Nrows()){ Matrix dat = data; Matrix tmp = design.t()*design; Matrix pinvdes = tmp.i()*design.t(); beta = pinvdes * dat; residu = dat - design*beta; dof = ols_dof(design); if ( requestedDOF>0) dof = requestedDOF; sigsq = sum(SP(residu,residu))/dof; float fact = float(dof) / design.Ncols(); f_fmf = SP(sum(SP(design*beta,design*beta)),pow(sum(SP(residu,residu)),-1)) * fact; pf_fmf = f_fmf.Row(1); for(int ctr1=1;ctr1<=f_fmf.Ncols();ctr1++) pf_fmf(1,ctr1) = 1.0-MISCMATHS::fdtr(design.Ncols(),dof,f_fmf.Column(ctr1).AsScalar()); if(contrasts.Storage()>0 && contrasts.Ncols()==beta.Nrows()){ cbeta = contrasts*beta; Matrix tmp = contrasts*pinvdes*pinvdes.t()*contrasts.t(); varcb = diag(tmp)*sigsq; t = SP(cbeta,pow(varcb,-0.5)); z = t; p=t; for(int ctr1=1;ctr1<=t.Ncols();ctr1++){ ColumnVector tmp = t.Column(ctr1); T2z::ComputeZStats(varcb.Column(ctr1),cbeta.Column(ctr1),dof, tmp); z.Column(ctr1) << tmp; T2z::ComputePs(varcb.Column(ctr1),cbeta.Column(ctr1),dof, tmp); p.Column(ctr1) << exp(tmp); } } } } }