/* MELODIC - Multivariate exploratory linear optimized decomposition into independent components melodic.cc - main program file Christian F. Beckmann, FMRIB Image Analysis Group Copyright (C) 1999-2008 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include "newmatap.h" #include "newmatio.h" #include "newimage/newimageall.h" #include "miscmaths/miscmaths.h" #include "miscmaths/miscprob.h" #include #include #include "utils/options.h" #include "utils/log.h" #include "meloptions.h" #include "meldata.h" #include "melpca.h" #include "melica.h" #include "melodic.h" #include "melreport.h" #include "melhlprfns.h" #include "melgmix.h" using namespace Utilities; using namespace NEWMAT; using namespace NEWIMAGE; using namespace Melodic; using namespace MISCPLOT; string myfloat2str(float f, int width, int prec, bool scientif){ ostringstream os; int redw = int(std::abs(std::log10(std::abs(f))))+1; if(width>0) os.width(width); if(scientif) os.setf(ios::scientific); os.precision(redw+std::abs(prec)); os.setf(ios::internal, ios::adjustfield); os << f; return os.str(); } Matrix mmall(Log& logger, MelodicOptions& opts, MelodicData& melodat, MelodicReport& report, Matrix& probs); void mmonly(Log& logger, MelodicOptions& opts, MelodicData& melodat, MelodicReport& report); int main(int argc, char *argv[]){ try{ // Setup logging: Log& logger = LogSingleton::getInstance(); // parse command line - will output arguments to logfile MelodicOptions& opts = MelodicOptions::getInstance(); opts.parse_command_line(argc, argv, logger, Melodic::version); //set up data object MelodicData melodat(opts,logger); //set up report object MelodicReport report(melodat,opts,logger); if (opts.filtermode || opts.filtermix.value().length()>0 || opts.ICsfname.value().length()>0){ if(opts.filtermode){ // just filter out some noise from a previous run melodat.setup(); if(opts.debug.value()) message(" Denoising data setup completed "<< endl); melodat.remove_components(); } else mmonly(logger,opts,melodat,report); } else { // standard PICA now int retry = 0; bool no_conv; bool leaveloop = false; melodat.setup(); do{ //do PCA pre-processing MelodicPCA pcaobj(melodat,opts,logger,report); pcaobj.perf_pca(); pcaobj.perf_white(); //do ICA MelodicICA icaobj(melodat,opts,logger,report); icaobj.perf_ica(melodat.get_white()*melodat.get_Data()); no_conv = icaobj.no_convergence; opts.maxNumItt.set_T(500); if((opts.approach.value()=="symm")&&(retry > std::min(opts.retrystep,3))) { if(no_conv){ retry++; opts.approach.set_T("defl"); message(endl << "Restarting MELODIC using deflation approach" << endl << endl); }else{ leaveloop = true; } }else{ if(no_conv){ retry++; if(opts.pca_dim.value()-retry*opts.retrystep > 0.1*melodat.data_dim()){ opts.pca_dim.set_T(opts.pca_dim.value()-retry*opts.retrystep); } else{ if(opts.pca_dim.value()+retry*opts.retrystep < melodat.data_dim()){ opts.pca_dim.set_T(opts.pca_dim.value()+retry*opts.retrystep); }else{ leaveloop = true; //stupid, but break does not compile //on all platforms } } if(!leaveloop){ if(opts.paradigmfname.value().length()>0) opts.pca_dim.set_T(std::max(opts.pca_dim.value(),melodat.get_param().Ncols()+3*opts.retrystep-1)); message(endl << "Restarting MELODIC using -d " << opts.pca_dim.value() << endl << endl); } } } } while (no_conv && retry1) report.Smode_rep(); report.PPCA_rep(); } message("done"<< endl < Mask; volume Mean; { volume4D RawData; message("Reading data file " << opts.inputfname.value().at(0) << " ... "); read_volume4D(RawData,opts.inputfname.value().at(0)); message(" done" << endl); Mean = meanvol(RawData); } { volume4D RawIC; message("Reading components " << opts.ICsfname.value() << " ... "); read_volume4D(RawIC,opts.ICsfname.value()); message(" done" << endl); message("Creating mask ... "); Mask = binarise(RawIC[0],float(RawIC[0].min()),float(RawIC[0].max())); ICs = RawIC.matrix(Mask); if(ICs.Nrows()>1){ Matrix DStDev=stdev(ICs); volume4D tmpMask; tmpMask.setmatrix(DStDev,Mask); float tMmax; volume tmpMask2; tmpMask2 = tmpMask[0]; tMmax = tmpMask2.max(); double st_mean = DStDev.Sum()/DStDev.Ncols(); double st_std = stdev(DStDev.t()).AsScalar(); Mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std, (float) 0.01*st_mean),tMmax); ICs = RawIC.matrix(Mask); } else{ Mask = binarise(RawIC[0],float(0.001),float(RawIC[0].max())) + binarise(RawIC[0],float(RawIC[0].min()),float(-0.001)); ICs = RawIC.matrix(Mask); } //cerr << "ICs : " << ICs.Ncols() << ICs.Nrows() << endl; message(" done" << endl); } if(opts.filtermix.value().length() > 0){ message("Reading mixing matrix " << opts.filtermix.value() << " ... "); mixMatrix = read_ascii_matrix(opts.filtermix.value()); if (mixMatrix.Storage()<=0) { cerr <<" Please specify the mixing matrix correctly" << endl; exit(2); } message(" done" << endl); }else{ mixMatrix=unifrnd(ICs.Nrows()+1,ICs.Nrows()); } if(opts.smodename.value().length() > 0){ message("Reading matrix of subject modes: " << opts.smodename.value()); Matrix tmp; tmp = read_ascii_matrix(opts.smodename.value()); if (tmp.Storage()<=0) { cerr <<" Please specify the mixing matrix correctly" << endl; exit(2); } message(" done" << endl); for (int ctr = 1; ctr <= tmp.Ncols(); ctr++){ Matrix tmp2 = tmp.Column(ctr); melodat.add_Smodes(tmp2); } } melodat.set_mask(Mask); melodat.set_mean(Mean); melodat.set_IC(ICs); melodat.set_mix(mixMatrix); fmixMatrix = calc_FFT(mixMatrix, opts.logPower.value()); melodat.set_fmix(fmixMatrix); fmixMatrix = pinv(mixMatrix); melodat.set_unmix(fmixMatrix); // melodat.sort(); // write_ascii_matrix("ICs",ICs); Matrix mmres; Matrix pmaps;//(ICs); if(opts.perf_mm.value()) mmres = mmall(logger,opts,melodat,report,pmaps); } Matrix mmall(Log& logger, MelodicOptions& opts,MelodicData& melodat, MelodicReport& report, Matrix& pmaps){ Matrix mmpars(5*melodat.get_IC().Nrows(),5); mmpars = 0; Log stats; if(opts.output_MMstats.value()){ stats.makeDir(logger.appendDir("stats"),"stats.log"); } message(endl << "Running Mixture Modelling on Z-transformed IC maps ..." << endl); ColumnVector diagvals; diagvals=pow(diag(melodat.get_unmix()*melodat.get_unmix().t()),-0.5); for(int ctr=1; ctr <= melodat.get_IC().Nrows(); ctr++){ MelGMix mixmod(opts, logger); message(" IC map " << ctr << " ... "<< endl;); Matrix ICmap; if(melodat.get_stdNoisei().Storage()>0) dbgmsg(" stdNoisei max : "<< melodat.get_stdNoisei().Maximum() <<" "<< melodat.get_stdNoisei().Minimum() << endl); if(opts.varnorm.value()&&melodat.get_stdNoisei().Storage()>0){ ICmap = SP(melodat.get_IC().Row(ctr),diagvals(ctr)*melodat.get_stdNoisei()); }else{ ICmap = melodat.get_IC().Row(ctr); } string wherelog; if(opts.genreport.value()) wherelog = report.getDir(); else wherelog = logger.getDir(); dbgmsg(" ICmap max : "<< mean(ICmap,2).AsScalar() << endl); mixmod.setup( ICmap, wherelog,ctr, melodat.get_mask(), melodat.get_mean(),3); message(" calculating mixture-model fit "<0) // tmp = SP(tmp,pow(diagvals(ctr)*melodat.get_stdNoisei(),-1)); melodat.set_IC(ctr,tmp); } if(opts.smooth_probmap.value()<0.0){ message(" smoothing probability map ... "<< endl); mixmod.smooth_probs(0.5*(std::min(std::min(std::abs(melodat.get_mean().xdim()),std::abs(melodat.get_mean().ydim())),std::abs(melodat.get_mean().zdim())))); } if(opts.smooth_probmap.value()>0.0){ message(" smoothing probability map ... "<< endl); mixmod.smooth_probs(opts.smooth_probmap.value()); } message(" thresholding ... "<< endl); mixmod.threshold(opts.mmthresh.value()); Matrix tmp; tmp=(mixmod.get_threshmaps().Row(1)); float posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum(); float negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum(); if((posint<0.01)&&(negint<0.01)){ mixmod.clear_infstr(); mixmod.threshold("0.05n "+opts.mmthresh.value()); posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum(); negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum(); } if(negint>posint){//flip map // melodat.flipres(ctr); // mixmod.flipres(ctr); } //save mixture model stats if(opts.output_MMstats.value()){ stats << " IC " << num2str(ctr) << " " << mixmod.get_type() << endl << " Means : " << mixmod.get_means() << endl << " Vars. : " << mixmod.get_vars() << endl << " Prop. : " << mixmod.get_pi() << endl << endl; message(" saving thresholded Z-stats image:"); melodat.save4D(mixmod.get_threshmaps(), string("stats/thresh_zstat")+num2str(ctr)); } //save mmpars // mmpars((ctr-1)*5+1,1) = ctr; // if(mixmod.get_type()=="GGM") // mmpars((ctr-1)*5+1,2) = 1.0; // else // mmpars((ctr-1)*5+1,2) = 0.0; // mmpars((ctr-1)*5+1,2) = mixmod.get_means().Ncols(); // tmp = mixmod.get_means(); // for(int ctr2=1;ctr2<=mixmod.get_means().Ncols();ctr2++) // mmpars((ctr-1)*5+2,ctr2) = tmp(1,ctr2); // tmp = mixmod.get_vars(); // for(int ctr2=1;ctr2<=mixmod.get_vars().Ncols();ctr2++) // mmpars((ctr-1)*5+3,ctr2) = tmp(1,ctr2); // tmp = mixmod.get_pi(); // for(int ctr2=1;ctr2<=mixmod.get_pi().Ncols();ctr2++) // mmpars((ctr-1)*5+4,ctr2) = tmp(1,ctr2); // mmpars((ctr-1)*5+5,1) = mixmod.get_offset(); if( bool(opts.genreport.value()) ){ message(" creating report page ... "); report.IC_rep(mixmod,ctr,melodat.get_IC().Nrows(),melodat.get_ICstats()); message(" done" << endl); } } if(!opts.filtermode&&opts.ICsfname.value().length()==0){ //now safe new data // bool what = opts.verbose.value(); //opts.verbose.set_T(false); melodat.set_after_mm(TRUE); melodat.save(); //opts.verbose.set_T(what); //if(melodat.get_IC().Storage()>0){ // volume4D tempVol; // tempVol.setmatrix(melodat.get_IC(),melodat.get_mask()); // save_volume4D(tempVol,logger.appendDir(opts.outputfname.value() // + "_IC"),melodat.tempInfo); // message(endl<< endl << " Saving " << logger.appendDir(opts.outputfname.value() + "_IC") <