/* Copyright (C) 1999-2004 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "mesh.h" #include "triangle.h" #include "mpoint.h" #include "pt_special.h" namespace mesh { Mesh::Mesh(){ } Mesh::~Mesh(){ for (list::iterator i=_triangles.begin(); i!=_triangles.end(); i++) delete (*i); for (vector::iterator i=_points.begin(); i!=_points.end(); i++) delete(*i); } Mesh::Mesh(const Mesh&m) { _points.clear(); _triangles.clear(); for (vector::const_iterator p= m._points.begin(); p!=m._points.end(); p++) { Mpoint * pt = new Mpoint((*p)->get_coord(), (*p)->get_no(), (*p)->get_value()); _points.push_back(pt); } for (list::const_iterator t= m._triangles.begin(); t!=m._triangles.end(); t++) { int v0 = (*t)->get_vertice(0)->get_no(), v1 = (*t)->get_vertice(1)->get_no(), v2 = (*t)->get_vertice(2)->get_no(); Triangle * tr = new Triangle(get_point(v0), get_point(v1), get_point(v2)); _triangles.push_back(tr); } init_loc_triangles(); } Mesh Mesh::operator=(const Mesh&m) { if (this == &m) return *this; for (list::iterator i=_triangles.begin(); i!=_triangles.end(); i++) delete (*i); for (vector::iterator i=_points.begin(); i!=_points.end(); i++) delete(*i); _points.clear(); _triangles.clear(); for (vector::const_iterator p= m._points.begin(); p!=m._points.end(); p++) { Mpoint * pt = new Mpoint((*p)->get_coord(), (*p)->get_no()); (*pt).data=(*p)->data; //optional line to copy data _points.push_back(pt); } for (list::const_iterator t= m._triangles.begin(); t!=m._triangles.end(); t++) { int v0 = (*t)->get_vertice(0)->get_no(), v1 = (*t)->get_vertice(1)->get_no(), v2 = (*t)->get_vertice(2)->get_no(); Triangle * tr = new Triangle(get_point(v0), get_point(v1), get_point(v2)); _triangles.push_back(tr); } init_loc_triangles(); return *this; } const int Mesh::nvertices() const { return _points.size(); } void Mesh::display() const{ cout<<*this<::iterator i=_triangles.begin(); i!=_triangles.end(); i++) delete (*i); _triangles.clear(); for (vector::iterator i=_points.begin(); i!=_points.end(); i++) delete(*i); _points.clear(); } void Mesh::init_loc_triangles(){ loc_triangles.clear(); for (list::iterator i=_triangles.begin(); i!=_triangles.end(); i++){ loc_triangles.push_back(*i); } } void make_mesh_from_octa(int n, Mesh& m) { m.clear(); Mpoint *XPLUS = new Mpoint( 1, 0, 0, 0); Mpoint *XMIN = new Mpoint(-1, 0, 0, 1); Mpoint *YPLUS = new Mpoint( 0, 1, 0, 2); Mpoint *YMIN = new Mpoint( 0, -1, 0, 3); Mpoint *ZPLUS = new Mpoint( 0, 0, 1, 4); Mpoint *ZMIN = new Mpoint( 0, 0, -1, 5); Triangle * t0= new Triangle( XPLUS, ZPLUS, YPLUS ); Triangle * t1= new Triangle( YPLUS, ZPLUS, XMIN ); Triangle * t2= new Triangle( XMIN , ZPLUS, YMIN ); Triangle * t3= new Triangle( YMIN , ZPLUS, XPLUS ); Triangle * t4= new Triangle( XPLUS, YPLUS, ZMIN ); Triangle * t5= new Triangle( YPLUS, XMIN , ZMIN ); Triangle * t6= new Triangle( XMIN , YMIN , ZMIN ); Triangle * t7= new Triangle( YMIN , XPLUS, ZMIN ); m._points.push_back(XPLUS); m._points.push_back(XMIN); m._points.push_back(YPLUS); m._points.push_back(YMIN); m._points.push_back(ZPLUS); m._points.push_back(ZMIN); m._triangles.push_back(t0); m._triangles.push_back(t1); m._triangles.push_back(t2); m._triangles.push_back(t3); m._triangles.push_back(t4); m._triangles.push_back(t5); m._triangles.push_back(t6); m._triangles.push_back(t7); for (int i = 1; i::iterator i = m._points.begin(); i!=m._points.end(); i++) { double norm = sqrt((*i)->get_coord().X * (*i)->get_coord().X + (*i)->get_coord().Y * (*i)->get_coord().Y + (*i)->get_coord().Z * (*i)->get_coord().Z); (*i)->_update_coord=(*i)->get_coord(); (*i)->_update_coord*=(1/norm); } m.update(); } } void make_mesh_from_icosa(int n, Mesh& m) { m.clear(); const double tau=0.8506508084; const double one=0.5257311121; Mpoint *ZA=new Mpoint( tau , one, 0, 0); Mpoint *ZB=new Mpoint( -tau, one, 0, 1); Mpoint *ZC=new Mpoint( -tau, -one, 0, 2); Mpoint *ZD=new Mpoint( tau, -one, 0, 3); Mpoint *YA=new Mpoint( one, 0 , tau, 4); Mpoint *YB=new Mpoint( one, 0, -tau, 5); Mpoint *YC=new Mpoint( -one, 0, -tau, 6); Mpoint *YD=new Mpoint( -one, 0, tau, 7); Mpoint *XA=new Mpoint( 0 , tau, one, 8); Mpoint *XB=new Mpoint( 0, -tau, one, 9); Mpoint *XC=new Mpoint( 0, -tau, -one, 10); Mpoint *XD=new Mpoint( 0, tau, -one, 11); Triangle * t0= new Triangle(YA, XA, YD); Triangle * t1= new Triangle(YA, YD, XB); Triangle * t2= new Triangle(YB, YC, XD); Triangle * t3= new Triangle(YB, XC, YC); Triangle * t4= new Triangle(ZA, YA, ZD); Triangle * t5= new Triangle(ZA, ZD, YB); Triangle * t6= new Triangle(ZC, YD, ZB); Triangle * t7= new Triangle(ZC, ZB, YC); Triangle * t8= new Triangle(XA, ZA, XD); Triangle * t9= new Triangle(XA, XD, ZB); Triangle * t10= new Triangle(XB, XC, ZD); Triangle * t11= new Triangle(XB, ZC, XC); Triangle * t12= new Triangle(XA, YA, ZA); Triangle * t13= new Triangle(XD, ZA, YB); Triangle * t14= new Triangle(YA, XB, ZD); Triangle * t15= new Triangle(YB, ZD, XC); Triangle * t16= new Triangle(YD, XA, ZB); Triangle * t17= new Triangle(YC, ZB, XD); Triangle * t18= new Triangle(YD, ZC, XB); Triangle * t19= new Triangle(YC, XC, ZC); m._points.push_back(ZA); m._points.push_back(ZB); m._points.push_back(ZC); m._points.push_back(ZD); m._points.push_back(YA); m._points.push_back(YB); m._points.push_back(YC); m._points.push_back(YD); m._points.push_back(XA); m._points.push_back(XB); m._points.push_back(XC); m._points.push_back(XD); m._triangles.push_back(t0); m._triangles.push_back(t1); m._triangles.push_back(t2); m._triangles.push_back(t3); m._triangles.push_back(t4); m._triangles.push_back(t5); m._triangles.push_back(t6); m._triangles.push_back(t7); m._triangles.push_back(t8); m._triangles.push_back(t9); m._triangles.push_back(t10); m._triangles.push_back(t11); m._triangles.push_back(t12); m._triangles.push_back(t13); m._triangles.push_back(t14); m._triangles.push_back(t15); m._triangles.push_back(t16); m._triangles.push_back(t17); m._triangles.push_back(t18); m._triangles.push_back(t19); for (list::iterator i=m._triangles.begin(); i!=m._triangles.end(); i++) (*i)->swap(); for (int io = 1; io::iterator i = m._points.begin(); i!=m._points.end(); i++) { double norm = sqrt((*i)->get_coord().X * (*i)->get_coord().X + (*i)->get_coord().Y * (*i)->get_coord().Y + (*i)->get_coord().Z * (*i)->get_coord().Z); (*i)->_update_coord=(*i)->get_coord(); (*i)->_update_coord*=(1/norm); } m.update(); } } void make_mesh_from_tetra(int n, Mesh& m) { const double sqrt_3=0.5773502692; const Pt PPP( sqrt_3, sqrt_3, sqrt_3); const Pt MMP( -sqrt_3, -sqrt_3, sqrt_3); const Pt MPM( -sqrt_3, sqrt_3, -sqrt_3); const Pt PMM( sqrt_3, -sqrt_3, -sqrt_3); m.clear(); Mpoint *p0=new Mpoint(PPP, 0); Mpoint *p1=new Mpoint(MMP, 1); Mpoint *p2=new Mpoint(MPM, 2); Mpoint *p3=new Mpoint(PMM, 3); Triangle * t0= new Triangle(p0, p1, p2); Triangle * t1= new Triangle(p0, p1, p3); Triangle * t2= new Triangle(p0, p3, p2); Triangle * t3= new Triangle(p3, p1, p2); m._points.push_back(p0); m._points.push_back(p1); m._points.push_back(p2); m._points.push_back(p3); m._triangles.push_back(t0); m._triangles.push_back(t1); m._triangles.push_back(t2); m._triangles.push_back(t3); for (int i = 1; i::iterator i = m._points.begin(); i!=m._points.end(); i++) { double norm = sqrt((*i)->get_coord().X * (*i)->get_coord().X + (*i)->get_coord().Y * (*i)->get_coord().Y + (*i)->get_coord().Z * (*i)->get_coord().Z); (*i)->_update_coord=(*i)->get_coord(); (*i)->_update_coord*=(1/norm); } m.update(); } } int Mesh::load(string s) { //loads a mesh - // returns: // -1 if load fails, // 0 if load is cancelled // 1 if load succeeds and file is a .off file, // 2 if load succeeds and file is a freesurfer file // 3 if load succeed and file is a .vtk file clear(); if (s == "manual_input") { // reads a line in standard input cout << "loading mesh : enter file name / c to cancel: "; s=""; while (s.empty()) { string input; getline(cin, input); s = input; } } //find out if it is an off file bool is_off=true; bool is_vtk=false; int ret=0; if (s!="c") { ifstream f(s.c_str()); if (f.is_open()) { //reading the header string header; getline(f, header); //cout<>N; if (N!=3) {cerr<<"this program only handles triangles meshes"<>NVertices>>NFaces>>NEdges; //reading the points for (int i=0; i>x>>y>>z; Mpoint * m = new Mpoint(x, y, z, i); _points.push_back(m); } //reading the triangles for (int i=0; i>j>>p0>>p1>>p2; Triangle * t = new Triangle(get_point(p0), get_point(p1), get_point(p2)); _triangles.push_back(t); } f.close(); } else {cout<<"error opening file"<>header>>NVertices>>header; // cout<<"load vtkmesh npts:"<>x>>y>>z; Mpoint * m = new Mpoint(x, y, z, i); _points.push_back(m); } f>>header>>NFaces>>header; //reading the triangles for (int i=0; i>j>>p0>>p1>>p2; Triangle * t = new Triangle(get_point(p0), get_point(p1), get_point(p2)); _triangles.push_back(t); } f>>header>>header; f>>header>>header>>header; f>>header>>header; //reading the values for (int i=0; i>val; _points[i]->set_value(val); } f.close(); } else {cout<<"error opening file"<>N; if (N!=3) {cerr<<"this program only handles triangles meshes"<>NVertices>>NFaces; //reading the points for (int i=0; i>x>>y>>z>>val; Mpoint * m = new Mpoint(x, y, z, i, val); _points.push_back(m); } //reading the triangles for (int i=0; i>p0>>p1>>p2>>val; Triangle * t = new Triangle(get_point(p0), get_point(p1), get_point(p2),val); _triangles.push_back(t); } f.close(); } else {cout<<"error opening file"<>N; if (N!=3) {cerr<<"this program only handles triangles meshes"<>NVertices; //reading the points for (int i=0; i>num>>x>>y>>z>>tmp; //NB - can't work out when Freesurfer sets the 5th value in label _points[num]->set_value(tmp); } f.close(); } else {cout<<"error opening file"<::const_iterator i=_points.begin();i!=_points.end();i++){ if((*i)->get_value()!=0 || saveall){ flot<<(*i)->get_no()<<" " <<(*i)->get_coord().X<<" " <<(*i)->get_coord().Y<<" " <<(*i)->get_coord().Z<<" " <<(*i)->get_value()<::const_iterator i=_points.begin();i!=_points.end();i++){ flot<<(*i)->get_coord().X<<" "<<(*i)->get_coord().Y<<" "<<(*i)->get_coord().Z<<" "<<(*i)->get_value()<::const_iterator i=_triangles.begin();i!=_triangles.end();i++){ flot<<(*i)->get_vertice(0)->get_no()<<" " <<(*i)->get_vertice(1)->get_no()<<" " <<(*i)->get_vertice(2)->get_no()<<" "<<0<get_vertice(1), t->get_vertice(0)); _t2 = new Triangle(_p, t->get_vertice(0), t->get_vertice(2)); _t3 = new Triangle(_p, t->get_vertice(2), t->get_vertice(1)); _triangles.remove(t); delete(t); _points.push_back(_p); _triangles.push_back(_t1); _triangles.push_back(_t2); _triangles.push_back(_t3); } //gives a correct orientation to the triangles void Mesh::reorientate() { int count = 0; list prov = _triangles; while (!prov.empty()) { count++; Triangle * current = prov.front(); prov.remove(current); current->oriented = true; if(!(prov.empty())) for (int c=0; c<3; c++) for (list::iterator i = current->get_vertice(c)->_triangles.begin(); i!= current->get_vertice(c)->_triangles.end();i++ ) { int m; {m = *(*i)oriented) prov.push_front(*i); break; case 2: if (!(*i)->oriented) {(*i)->swap(); prov.push_front(*i);} break; } } } for (list::iterator i = _triangles.begin(); i!= _triangles.end();i++ ) (*i)->oriented = false; } void Mesh::update() { for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->update(); } void Mesh::translation(const double x,const double y,const double z) { for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->translation(x, y, z); } void Mesh::translation(const Vec v) { double x = v.X, y = v.Y, z = v.Z; for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->translation(x, y, z); } void Mesh::rotation(const double r11, const double r12, const double r13,const double r21, const double r22, const double r23,const double r31, const double r32, const double r33, const double x, const double y, const double z) { for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->rotation(r11,r12,r13,r21,r22,r23,r31,r32,r33, x, y, z); } void Mesh::rescale(const double t, const double x, const double y, const double z) { for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->rescale(t, x, y, z); } void Mesh::rescale(const double t , const Pt p) { for (vector::iterator i = _points.begin(); i!=_points.end(); i++) (*i)->rescale(t, p.X, p.Y, p.Z); } void Mesh::retessellate() { vector added_points; list tr = _triangles; added_points.clear(); for (list::iterator t=tr.begin(); t!=tr.end(); t++) { Mpoint* v0=(*t)->get_vertice(0); Mpoint* v1=(*t)->get_vertice(1); Mpoint* v2=(*t)->get_vertice(2); Pt pt0((v1->get_coord().X + v2->get_coord().X)/2, (v1->get_coord().Y + v2->get_coord().Y)/2, (v1->get_coord().Z + v2->get_coord().Z)/2); Pt pt2((v0->get_coord().X + v1->get_coord().X)/2, (v0->get_coord().Y + v1->get_coord().Y)/2, (v0->get_coord().Z + v1->get_coord().Z)/2); Pt pt1((v0->get_coord().X + v2->get_coord().X)/2, (v0->get_coord().Y + v2->get_coord().Y)/2, (v0->get_coord().Z + v2->get_coord().Z)/2); Mpoint* p1 = NULL; Mpoint* p2 = NULL; Mpoint* p0 = NULL; int count=0; bool b0=true, b1=true, b2=true; for (vector::const_iterator mi=added_points.begin(); mi!=added_points.end(); mi++) { Pt current = (*mi)->get_coord(); if (pt0==current) {b0=false; p0=*mi;} if (pt1==current) {b1=false; p1=*mi;} if (pt2==current) {b2=false; p2=*mi;} } if (b0) {p0=new Mpoint(pt0, nvertices() + count); count++;}; if (b1) {p1=new Mpoint(pt1, nvertices() + count); count++;}; if (b2) {p2=new Mpoint(pt2, nvertices() + count); count++;}; Triangle* t0 = new Triangle(p2, p0, p1); Triangle* t1 = new Triangle(p1, v0, p2); Triangle* t2 = new Triangle(p0, v2, p1); Triangle* t3 = new Triangle(p2, v1, p0); _triangles.push_back(t0); _triangles.push_back(t1); _triangles.push_back(t2); _triangles.push_back(t3); if (b0) {_points.push_back(p0);added_points.push_back(p0);} if (b1) {_points.push_back(p1);added_points.push_back(p1);} if (b2) {_points.push_back(p2);added_points.push_back(p2);} v0->_neighbours.remove(v1); v0->_neighbours.remove(v2); v1->_neighbours.remove(v0); v1->_neighbours.remove(v2); v2->_neighbours.remove(v1); v2->_neighbours.remove(v0); vector::iterator ite2=added_points.begin(); ite2++; } for (list::iterator t=tr.begin(); t!=tr.end(); t++) { _triangles.remove(*t); delete (*t); } } double Mesh::distance(const Pt& p) const { bool triangle = false; Mpoint * nearest_point = NULL; Triangle * nearest_triangle = NULL; double min = 50000; // ... for (vector::const_iterator i = _points.begin(); i != _points.end(); i++) if (((**i) - p).norm() < min) { min = ((**i) - p).norm(); nearest_point = (*i); } for (list::const_iterator i = _triangles.begin(); i!=_triangles.end(); i++) { Pt pp; //projection of p on the triangle double d = 50000; double a, b, c, xm, ym, zm; Vec n = (*i)->normal(); n.normalize(); a=n.X; b=n.Y; c=n.Z; Pt M = (*i)->get_vertice(0)->get_coord(); xm=M.X; ym=M.Y; zm=M.Z; pp.Z =p.Z + c* (a* (xm - p.X) + b* (ym - p.Y) + c* (zm - p.Z)); pp.X =p.X + a* (a* (xm - p.X) + b* (ym - p.Y) + c* (zm - p.Z)); pp.Y =p.Y + b* (a* (xm - p.X) + b* (ym - p.Y) + c* (zm - p.Z)); Vec n0, n1, n2; n0 = (*(*i)->get_vertice(2) - *(*i)->get_vertice(1))*(*(*i)->get_vertice(2) - pp); n1 = (*(*i)->get_vertice(0) - *(*i)->get_vertice(2))*(*(*i)->get_vertice(0) - pp); n2 = (*(*i)->get_vertice(1) - *(*i)->get_vertice(0))*(*(*i)->get_vertice(1) - pp); if ((n0|n1) >= 0 && (n0|n2) >= 0) d = (pp - p).norm(); if (dnormal()|(nearest_triangle->centroid() - p))>0) min=-min;} else {if ((nearest_point->local_normal()|(*nearest_point - p))>0) min=-min;} return min; } const double Mesh::self_intersection(const Mesh& original) const { double intersection = 0; if (original._points.size() != _points.size()) {cerr<<"error, parameter for self_intersection should be the original mesh"<::const_iterator io = original._points.begin(); double ml = 0, mlo = 0; int counter = 0; for (vector::const_iterator i = _points.begin(); i!=_points.end(); i++, io++ ) { counter++; ml += (*i)->medium_distance_of_neighbours(); mlo += (*io)->medium_distance_of_neighbours(); } ml/=counter; mlo/=counter; io = original._points.begin(); vector::const_iterator jo = original._points.begin(); for (vector::const_iterator i = _points.begin(); i!=_points.end(); i++, io++) { jo = original._points.begin(); for (vector::const_iterator j = _points.begin(); j!=_points.end(); j++, jo++) if (!((*i)==(*j)) && !((**i)<(**j))) if (((*i)->get_coord().X - (*j)->get_coord().X) * ((*i)->get_coord().X - (*j)->get_coord().X) + ((*i)->get_coord().Y - (*j)->get_coord().Y) * ((*i)->get_coord().Y - (*j)->get_coord().Y) + ((*i)->get_coord().Z - (*j)->get_coord().Z) * ((*i)->get_coord().Z - (*j)->get_coord().Z)< ml * ml) { double dist = (((**i) - (**j)).norm())/ml; double disto = (((**io) - (**jo)).norm())/mlo; intersection += (dist - disto)*(dist - disto); } } return intersection; } void Mesh::stream_mesh(ostream& flot,int type) const{ flot.setf(ios::fixed);// 6 decimal places - matches freesurfer.. flot.precision(6); #ifdef PPC64 int n=0; #endif if(type==1){ flot<<"OFF"<::const_iterator i =_points.begin(); i!=_points.end(); i++) { // flot.precision(6); flot<<(*i)->get_coord().X<<" "<<(*i)->get_coord().Y<<" "<<(*i)->get_coord().Z<::const_iterator i=_triangles.begin(); i!=_triangles.end(); i++) flot<<"3 "<<(*i)->get_vertice(0)->get_no()<<" "<<(*i)->get_vertice(1)->get_no()<<" "<<(*i)->get_vertice(2)->get_no()<<" "<::const_iterator i =_points.begin(); i!=_points.end(); i++) { // flot.precision(6); flot<<(*i)->get_coord().X<<" "<<(*i)->get_coord().Y<<" "<<(*i)->get_coord().Z<<" "<<(*i)->get_value()<::const_iterator i=_triangles.begin(); i!=_triangles.end(); i++) flot<<(*i)->get_vertice(0)->get_no()<<" "<<(*i)->get_vertice(1)->get_no()<<" "<<(*i)->get_vertice(2)->get_no()<<" "<<(*i)->get_value()<::const_iterator i =_points.begin(); i!=_points.end(); i++) { // flot.precision(6); flot<<(*i)->get_coord().X<<" "<<(*i)->get_coord().Y<<" "<<(*i)->get_coord().Z<::const_iterator i=_triangles.begin(); i!=_triangles.end(); i++) flot<<"3 "<<(*i)->get_vertice(0)->get_no()<<" "<<(*i)->get_vertice(1)->get_no()<<" "<<(*i)->get_vertice(2)->get_no()<<" "< v; for (vector::const_iterator i = this->_points.begin(); i != this->_points.end(); i++) { Pt_special * p = new (Pt_special); p->P = (*i); for (list::const_iterator i2 = (*i)->_triangles.begin(); i2 != (*i)->_triangles.end(); i2++) {p->T.push_back(*i2);} v.push_back(p); } for (list::const_iterator i = this->_triangles.begin(); i != this->_triangles.end(); i++) { //initialize (*i)->data.clear(); (*i)->data.push_back(0); //compute the center Pt centre(0, 0, 0); centre += (*i)->get_vertice(0)->get_coord(); centre += (*i)->get_vertice(1)->get_coord(); centre += (*i)->get_vertice(2)->get_coord(); centre *= 1/3; (*i)->data.push_back(centre.X); (*i)->data.push_back(centre.Y); (*i)->data.push_back(centre.Z); //compute the max distance to the center double max = 0; for (int e = 0; e < 3; e++) { double c = (centre.X - (*i)->get_vertice(e)->get_coord().X)*(centre.X - (*i)->get_vertice(e)->get_coord().X) + (centre.Y - (*i)->get_vertice(e)->get_coord().Y)*(centre.Y - (*i)->get_vertice(e)->get_coord().Y) + (centre.Z - (*i)->get_vertice(e)->get_coord().Z)*(centre.Z - (*i)->get_vertice(e)->get_coord().Z); if (c > max) max = c; } (*i)->data.push_back(max); } sort(v.begin(), v.end(), compPt()); bool result = false; //swipping list l; l.clear(); for (vector::iterator i = v.begin(); i != v.end(); i++) { if (result) break; for (list::iterator tr = (*i)->T.begin(); tr != (*i)->T.end(); tr++) { if (result) break; if ((*tr)->data[0] == 0) { //main loop for (list::const_iterator tr2 = l.begin(); tr2 != l.end(); tr2++) { bool res = false; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { if (!res) if ((*tr2)->get_vertice(i)->get_coord() == (*tr)->get_vertice(j)->get_coord()) res = true; } if (!res) { double d = ((*tr)->data[1] - (*tr2)->data[1]) * ((*tr)->data[1] - (*tr2)->data[1]) + ((*tr)->data[2] - (*tr2)->data[2]) * ((*tr)->data[2] - (*tr2)->data[2]) + ((*tr)->data[3] - (*tr2)->data[3]) * ((*tr)->data[3] - (*tr2)->data[3]); if (d < (*tr)->data[4] + (*tr2)->data[4] ) { result = result | (*tr)->intersect(**tr2); } } } l.push_back(*tr); (*tr)->data[0] = 1; } else if ((*tr)->data[0] == 1) (*tr)->data[0] = 2; else if ((*tr)->data[0] == 2) {l.remove(*tr);} } } return result; } }