/* Copyright (C) 1999-2004 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include "triangle.h" #include "mpoint.h" namespace mesh{ //this constructor also puts the connexions between the points. Triangle::Triangle(Mpoint* const p1, Mpoint* const p2, Mpoint* const p3,float val):_value(val) { oriented = false; _vertice[0]=p1; _vertice[1]=p2; _vertice[2]=p3; p1->_triangles.push_back(this); p2->_triangles.push_back(this); p3->_triangles.push_back(this); p1->_neighbours.remove(p2); p1->_neighbours.remove(p3); p2->_neighbours.remove(p3); p2->_neighbours.remove(p1); p3->_neighbours.remove(p1); p3->_neighbours.remove(p2); p1->_neighbours.push_back(p2); p1->_neighbours.push_back(p3); p2->_neighbours.push_back(p3); p2->_neighbours.push_back(p1); p3->_neighbours.push_back(p1); p3->_neighbours.push_back(p2); } //warning, you should remove neighbourhood relations between points by hand Triangle::~Triangle() { _vertice[0]->_triangles.remove(this); _vertice[1]->_triangles.remove(this); _vertice[2]->_triangles.remove(this); } const Pt Triangle::centroid() const{ return Pt((_vertice[0]->get_coord().X +_vertice[1]->get_coord().X +_vertice[2]->get_coord().X)/3, (_vertice[0]->get_coord().Y +_vertice[1]->get_coord().Y +_vertice[2]->get_coord().Y)/3, (_vertice[0]->get_coord().Z +_vertice[1]->get_coord().Z +_vertice[2]->get_coord().Z)/3 ); } const Vec Triangle::normal() const{ Vec result = (_vertice[2]->get_coord() - _vertice[0]->get_coord()) * (_vertice[1]->get_coord() - _vertice[0]->get_coord()); return result; } const Vec Triangle::area(const Mpoint* const p) const{ Vec v1,v2,vA; float Tarea; //calculate v1=*_vertice[1]-*_vertice[0]; v2=*_vertice[2]-*_vertice[0]; Tarea=0.5*((v1*v2).norm()); //find appriopriate vector for (int i = 0; i<3; i++){ if (p==_vertice[i]){ vA=(this->centroid())-*_vertice[i]; } } vA=vA/vA.norm()*Tarea; return vA; } Mpoint * const Triangle::get_vertice(const int i) const {return _vertice[i];} void Triangle::swap() { Mpoint * p = _vertice[1]; _vertice[1] = _vertice[2]; _vertice[2] = p; } //check if two triangles are adjacents //0 if not //1 if yes and good orientation //2 if yes and bad orientation const int Triangle::operator <(const Triangle * const t) const{ int c = 0; int a11=-1, a12=-1, a21=-1, a22=-1; for (int i=0; i<3; i++) for (int j=0; j<3; j++) if (_vertice[i]==t->_vertice[j]) { if (a11 == -1) {a11=i; a21=j;} else {a12=i; a22=j;}; c++;//cout<get_vertice(0)->get_coord() - this->get_vertice(1)->get_coord()) * (this->get_vertice(0)->get_coord() - this->get_vertice(2)->get_coord()); if ((normal|(t.get_vertice(0)->get_coord() - this->get_vertice(0)->get_coord())) * (normal|(t.get_vertice(1)->get_coord() - this->get_vertice(0)->get_coord())) < 0) { //possible intersection -> make the full test //test from *this for (int i = 0; i < 3; i++) if ((normal|(t.get_vertice(i)->get_coord() - this->get_vertice(0)->get_coord())) * (normal|(t.get_vertice((i+1)%3)->get_coord() - this->get_vertice(0)->get_coord())) < 0) { Vec v1 = this->get_vertice(1)->get_coord() - this->get_vertice(0)->get_coord(); Vec v2 = this->get_vertice(2)->get_coord() - this->get_vertice(0)->get_coord(); Vec v3 = this->get_vertice(2)->get_coord() - this->get_vertice(1)->get_coord(); Vec v = v1 * v2; Vec p1 = t.get_vertice(i)->get_coord() - this->get_vertice(0)->get_coord(); Vec d1 = t.get_vertice((i+1)%3)->get_coord() - t.get_vertice(i)->get_coord(); double denom = (d1.X * v.X + d1.Y * v.Y + d1.Z * v.Z); if (denom != 0) { double lambda1 = - (p1.X * v.X + p1.Y * v.Y + p1.Z * v.Z)/denom; Vec proj1 = p1 + (d1 * lambda1); //checks if proj is inside the triangle ... bool inside = false; Vec n1 = v1 * proj1; Vec n2 = proj1 * v2; Vec n3 = v3 * (proj1 + (v1 * -1)); if (((n1 | n3) > 0 & (n2 | n3) > 0 & (n1 | n2) > 0) | ((n1 | n3) < 0 & (n2 | n3) < 0 & (n1 | n2) < 0) ) inside = true; result = result | inside; } } //test from t Vec normalt = (t.get_vertice(0)->get_coord() - t.get_vertice(1)->get_coord()) * (t.get_vertice(0)->get_coord() - t.get_vertice(2)->get_coord()); for (int i = 0; i < 3; i++) if ((normalt|(this->get_vertice(i)->get_coord() - t.get_vertice(0)->get_coord())) * (normalt|(this->get_vertice((i+1)%3)->get_coord() - t.get_vertice(0)->get_coord())) < 0) { Vec v1 = t.get_vertice(1)->get_coord() - t.get_vertice(0)->get_coord(); Vec v2 = t.get_vertice(2)->get_coord() - t.get_vertice(0)->get_coord(); Vec v3 = t.get_vertice(2)->get_coord() - t.get_vertice(1)->get_coord(); Vec v = v1 * v2; Vec p1 = this->get_vertice(i)->get_coord() - t.get_vertice(0)->get_coord(); Vec d1 = this->get_vertice((i+1)%3)->get_coord() - this->get_vertice(i)->get_coord(); double denom = (d1.X * v.X + d1.Y * v.Y + d1.Z * v.Z); if (denom != 0) { double lambda1 = - (p1.X * v.X + p1.Y * v.Y + p1.Z * v.Z)/denom; Vec proj1 = p1 + (d1 * lambda1); //checks if proj is inside the triangle ... bool inside = false; Vec n1 = v1 * proj1; Vec n2 = proj1 * v2; Vec n3 = v3 * (proj1 + (v1 * -1)); if (((n1 | n3) > 0 & (n2 | n3) > 0 & (n1 | n2) > 0) | ((n1 | n3) < 0 & (n2 | n3) < 0 & (n1 | n2) < 0) ) inside = true; result = result | inside; } } } else if ((normal|(t.get_vertice(0)->get_coord() - this->get_vertice(0)->get_coord())) * (normal|(t.get_vertice(2)->get_coord() - this->get_vertice(0)->get_coord())) < 0) { //possible intersection -> make the full test //test from *this for (int i = 0; i < 3; i++) if ((normal|(t.get_vertice(i)->get_coord() - this->get_vertice(0)->get_coord())) * (normal|(t.get_vertice((i+1)%3)->get_coord() - this->get_vertice(0)->get_coord())) < 0) { Vec v1 = this->get_vertice(1)->get_coord() - this->get_vertice(0)->get_coord(); Vec v2 = this->get_vertice(2)->get_coord() - this->get_vertice(0)->get_coord(); Vec v3 = this->get_vertice(2)->get_coord() - this->get_vertice(1)->get_coord(); Vec v = v1 * v2; Vec p1 = t.get_vertice(i)->get_coord() - this->get_vertice(0)->get_coord(); Vec d1 = t.get_vertice((i+1)%3)->get_coord() - t.get_vertice(i)->get_coord(); double denom = (d1.X * v.X + d1.Y * v.Y + d1.Z * v.Z); if (denom != 0) { double lambda1 = - (p1.X * v.X + p1.Y * v.Y + p1.Z * v.Z)/denom; Vec proj1 = p1 + (d1 * lambda1); //checks if proj is inside the triangle ... bool inside = false; Vec n1 = v1 * proj1; Vec n2 = proj1 * v2; Vec n3 = v3 * (proj1 + (v1 * -1)); if (((n1 | n3) > 0 & (n2 | n3) > 0 & (n1 | n2) > 0) | ((n1 | n3) < 0 & (n2 | n3) < 0 & (n1 | n2) < 0) ) { inside = true; } result = result | inside; } } //test from t Vec normalt = (t.get_vertice(0)->get_coord() - t.get_vertice(1)->get_coord()) * (t.get_vertice(0)->get_coord() - t.get_vertice(2)->get_coord()); for (int i = 0; i < 3; i++) if ((normalt|(this->get_vertice(i)->get_coord() - t.get_vertice(0)->get_coord())) * (normalt|(this->get_vertice((i+1)%3)->get_coord() - t.get_vertice(0)->get_coord())) < 0) { Vec v1 = t.get_vertice(1)->get_coord() - t.get_vertice(0)->get_coord(); Vec v2 = t.get_vertice(2)->get_coord() - t.get_vertice(0)->get_coord(); Vec v3 = t.get_vertice(2)->get_coord() - t.get_vertice(1)->get_coord(); Vec v = v1 * v2; Vec p1 = this->get_vertice(i)->get_coord() - t.get_vertice(0)->get_coord(); Vec d1 = this->get_vertice((i+1)%3)->get_coord() - this->get_vertice(i)->get_coord(); double denom = (d1.X * v.X + d1.Y * v.Y + d1.Z * v.Z); if (denom != 0) { double lambda1 = - (p1.X * v.X + p1.Y * v.Y + p1.Z * v.Z)/denom; Vec proj1 = p1 + (d1 * lambda1); //checks if proj is inside the triangle ... bool inside = false; Vec n1 = v1 * proj1; Vec n2 = proj1 * v2; Vec n3 = v3 * (proj1 + (v1 * -1)); if (((n1 | n3) > 0 & (n2 | n3) > 0 & (n1 | n2) > 0) | ((n1 | n3) < 0 & (n2 | n3) < 0 & (n1 | n2) < 0) ) { inside = true; } result = result | inside; } } } else {return (false);} return result; } // Saad // algorithm from: // http://softsurfer.com/Archive/algorithm_0105/algorithm_0105.htm#intersect_RayTriangle() const bool Triangle::intersect(const vector & p) const { Vec u,v,n; // triangle vectors Vec dir,w0,w; // ray vectors double r, a, b; // params to calc ray-plane intersect // check if point is one the vertices for(int ii=0;ii<=2;ii++){ if((*_vertice[ii])==p[0])return true; if((*_vertice[ii])==p[1])return true; } // get triangle edge vectors and plane normal u = *_vertice[1]-*_vertice[0]; v = *_vertice[2]-*_vertice[0]; n = u*v; // cross product if (n.norm()==0) // triangle is degenerate return false; dir = p[1]-p[0]; // ray direction vector w0 = p[0]-*_vertice[0]; a = -(n|w0); b = (n|dir); if (fabs(b) < 0.001) { // ray is parallel to triangle plane if (fabs(a) < 0.001) // ray lies in triangle plane return true; else return false; // ray disjoint from plane } // get intersect point of ray with triangle plane r = a / b; if (r < 0.0) // ray goes away from triangle return false; // => no intersect if(r > 1.0) return false; // for a segment, also test if (r > 1.0) => no intersect Pt I; I = p[0] + r * dir; // intersect point of ray and plane // is I inside T? double uu, uv, vv, wu, wv, D; uu = (u|u); uv = (u|v); vv = (v|v); w = I - *_vertice[0]; wu = (w|u); wv = (w|v); D = uv * uv - uu * vv; // get and test parametric coords double s, t; s = (uv * wv - vv * wu) / D; if (s < 0.0 || s > 1.0) // I is outside T return false; t = (uv * wu - uu * wv) / D; if (t < 0.0 || (s + t) > 1.0) // I is outside T return false; return true; // I is in T } const bool Triangle::intersect(const vector & p,int& ind) const { Vec u,v,n; // triangle vectors Vec dir,w0,w; // ray vectors double r, a, b; // params to calc ray-plane intersect // check if point is one the vertices for(int ii=0;ii<=2;ii++){ if((*_vertice[ii])==p[0]){ind=ii;return true;} if((*_vertice[ii])==p[1]){ind=ii;return true;} } // get triangle edge vectors and plane normal u = *_vertice[1]-*_vertice[0]; v = *_vertice[2]-*_vertice[0]; n = u*v; // cross product if (n.norm()==0) // triangle is degenerate return false; dir = p[1]-p[0]; // ray direction vector w0 = p[0]-*_vertice[0]; a = -(n|w0); b = (n|dir); if (fabs(b) < 0.0000000001) { // ray is parallel to triangle plane if (fabs(a) < 0.0000000001) // ray lies in triangle plane return true; else return false; // ray disjoint from plane } // get intersect point of ray with triangle plane r = a / b; if (r < 0.0) // ray goes away from triangle return false; // => no intersect if(r > 1.0) return false; // for a segment, also test if (r > 1.0) => no intersect Pt I; I = p[0] + r * dir; // intersect point of ray and plane // is I inside T? double uu, uv, vv, wu, wv, D; uu = (u|u); uv = (u|v); vv = (v|v); w = I - *_vertice[0]; wu = (w|u); wv = (w|v); D = uv * uv - uu * vv; // get and test parametric coords double s, t; s = (uv * wv - vv * wu) / D; if (s < 0.0 || s > 1.0) // I is outside T return false; t = (uv * wu - uu * wv) / D; if (t < 0.0 || (s + t) > 1.0) // I is outside T return false; // which vertex is closest to where the segment intersects? float x=uu-2*wu,y=vv-2*wv; if( x<0 ){ if( x