/* miscprob.cc Christian Beckmann & Mark Woolrich, FMRIB Image Analysis Group Copyright (C) 1999-2000 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ // Miscellaneous maths functions that rely on libprob #include "miscprob.h" #include "stdlib.h" #include "newmatio.h" #include // #include "gam.h" using namespace NEWMAT; namespace MISCMATHS { // ReturnMatrix betarnd(const int dim1, const int dim2, const float a, const float b) // { // // Devroye, L. (1986) Non-Uniform Random Variate Generation, Springer-Verlag. // int tdim = dim2; // if(tdim<0){tdim=dim1;} // Matrix g1=gammarnd(dim1, tdim, a, 1); // Matrix g2=gammarnd(dim1, tdim, b, 1); // Matrix res(dim1,tdim); // for (int mc=1; mc<=res.Ncols(); mc++) { // for (int mr=1; mr<=res.Nrows(); mr++) { // res(mr,mc)=g1(mr,mc)/(g1(mr,mc)+g2(mr,mc)); // } // } // res.Release(); // return res; // } ReturnMatrix betapdf(const RowVector& vals, const float a, const float b) { RowVector res(vals); if(a<0 || b<0) { throw Exception("Negative a or b in call to Miscprob::betapdf"); } for (int mc=1; mc<=res.Ncols(); mc++) { float x=vals(mc); if(x<0) { res(mc)=0; } else { float logkerna=(a-1)*std::log(x); float logkernb=(b-1)*std::log(1-x); float betaln_ab=lgam(a)+lgam(b)-lgam(a+b); res(mc)=std::exp(logkerna+logkernb-betaln_ab); } } res.Release(); return res; } ReturnMatrix unifrnd(const int dim1, const int dim2, const float start, const float end) { int tdim = dim2; double tmpD=1.0; if(tdim<0){tdim=dim1;} Matrix res(dim1,tdim); for (int mc=1; mc<=res.Ncols(); mc++) { for (int mr=1; mr<=res.Nrows(); mr++) { tmpD = (rand()+1)/double(RAND_MAX+2.0); res(mr,mc)=(tmpD)*(end-start)+start; //drand(&tmpD); //res(mr,mc)=(tmpD-1)*(end-start)+start; } } res.Release(); return res; } ReturnMatrix normrnd(const int dim1, const int dim2, const float mu, const float sigma) { int tdim = dim2; double tmpD=1.0; if(tdim<0){tdim=dim1;} Matrix res(dim1,tdim); for (int mc=1; mc<=res.Ncols(); mc++) { for (int mr=1; mr<=res.Nrows(); mr++) { tmpD = (rand()+1)/double(RAND_MAX+2.0); res(mr,mc)=ndtri(tmpD)*sigma+mu ; //drand(&tmpD); //res(mr,mc)=ndtri(tmpD-1)*sigma+mu ; } } res.Release(); return res; } ReturnMatrix normpdf(const RowVector& vals, const float mu, const float var) { RowVector res(vals); for (int mc=1; mc<=res.Ncols(); mc++){ res(mc) = std::exp(-0.5*(std::pow(vals(mc)-mu,2)/var))*std::pow(2*M_PI*var,-0.5); } res.Release(); return res; } ReturnMatrix normcdf(const RowVector& vals, const float mu, const float var) { RowVector res(vals); RowVector tmp; tmp = (vals-mu)/std::sqrt(var); for (int mc=1; mc<=res.Ncols(); mc++){ res(mc) = ndtr(tmp(mc)); } res.Release(); return res; } ReturnMatrix gammacdf(const RowVector& vals, const float mu, const float var) { RowVector res(vals); res=0; if((mu>0)&&(var>0)){ float b = std::pow(mu,2)/var; float a = mu/var; for (int mc=1; mc<=res.Ncols(); mc++){ if(vals(mc)>0) res(mc) = gdtr(a,b,vals(mc)); } } res.Release(); return res; } ReturnMatrix gammapdf(const RowVector& vals, const float mu, const float var) { RowVector res(vals); res=0; if((mu>0)&&(var>0.00001)){ float a = std::pow(mu,2)/var; float b = mu/var; float c = lgam(a); if(std::abs(c) < 150){ for (int mc=1; mc<=res.Ncols(); mc++){ if(vals(mc)>0.000001){ res(mc) = std::exp(a*std::log(b) + (a-1) * std::log(vals(mc)) - b*vals(mc) - c); } } } } res.Release(); return res; } float normpdf(const float val, const float mu, const float var) { return std::exp(-0.5*(std::pow(val-mu,2)/var))*std::pow(2*M_PI*var,-0.5); } float lognormpdf(const float val, const float mu, const float var) { return -0.5*(std::pow(val-mu,2)/var+std::log(2*M_PI*var)); } ReturnMatrix normpdf(const RowVector& vals, const RowVector& mu, const RowVector& var) { Matrix res(mu.Ncols(),vals.Ncols()); for (int mc=1; mc<=res.Ncols(); mc++){ for (int mr=1; mr<=res.Nrows(); mr++){ res(mr,mc) = std::exp(-0.5*(std::pow(vals(mc)-mu(mr),2)/var(mr)))*std::pow(2*M_PI*var(mr),-0.5); } } res.Release(); return res; } ReturnMatrix mvnrnd(const RowVector& mu, const SymmetricMatrix& covar, int nsamp) { // Matrix eig_vec; // DiagonalMatrix eig_val; // EigenValues(covar,eig_val,eig_vec); // Matrix ret = ones(nsamp, 1)*mu + dnormrandm(nsamp,mu.Ncols())*sqrt(eig_val)*eig_vec.t(); Mvnormrandm mvn(mu, covar); return mvn.next(nsamp); } float mvnpdf(const RowVector& vals, const RowVector& mu, const SymmetricMatrix& covar) { if(vals.Ncols()==2) return bvnpdf(vals,mu,covar); else return std::exp(-0.5*((vals-mu)*covar.i()*(vals-mu).t()).AsScalar())/(std::pow(covar.Determinant(),0.5)*std::pow(2*M_PI,vals.Ncols()/2.0)); } float bvnpdf(const RowVector& vals, const RowVector& mu, const SymmetricMatrix& covar) { // bivariate normal pdf double det=covar(1,1)*covar(2,2)-Sqr(covar(1,2)); float m1=vals(1)-mu(1); float m2=vals(2)-mu(2); float ss=(Sqr(m1)*covar(2,2)-2*m1*m2*covar(1,2)+Sqr(m2)*covar(1,1))/det; return std::exp(-0.5*ss)/(std::pow(det,0.5)*std::pow(2*M_PI,vals.Ncols()/2.0)); } // ReturnMatrix gammarnd(const int dim1, const int dim2, // const float a, const float b) // { // // Marsaglia, G. and Tsang, W.W. (2000) "A Simple Method for Generating Gamma Variables", Acm Trans. Math. Soft. 26(3):363-372. // int tdim = dim2; // if(tdim<0){tdim=dim1;} // Matrix res(dim1,tdim); // Gam& gam=Gam::getInstance(); // gam.setParams(a,b); // for (int mc=1; mc<=res.Ncols(); mc++) { // for (int mr=1; mr<=res.Nrows(); mr++) { // res(mr,mc)=gam.rnd(); // } // } // res.Release(); // return res; // } ReturnMatrix perms(const int n){ if(n<=1){ Matrix P(1,1); P << n; P.Release(); return P; } Matrix Q = perms(n-1); // recursive calls int m = Q.Nrows(); Matrix P(n*m,n); for(int i=1;i<=m;i++){ P(i,1)=n; for(int j=1;j<=Q.Ncols();j++) P(i,j+1)=Q(i,j); } for(int i=n-1;i>=1;i--){ int jj=1; for(int j=(n-i)*m+1;j<=(n-i+1)*m;j++){ P(j,1)=i; for(int k=1;k<=n-1;k++){ P(j,k+1)= (Q(jj,k)==i) ? n : Q(jj,k); } jj++; } } P.Release(); return P; } }