/* Copyright (C) 2012 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ // Declarations for nonlinear optimisation #ifndef nonlin_h #define nonlin_h #include #include #include #include "bfmatrix.h" #include "newmat.h" namespace MISCMATHS { enum NLMethod {NL_VM, // Variable-Metric (see NRinC) NL_CG, // Conjugate-Gradient (see NRinC) NL_SCG, // Scaled Conjugate-Gradient (See Moller 1993). NL_LM, // Levenberg-Marquardt (see NRinC) NL_GD}; // Gradient Descent enum LMType {LM_L, LM_LM}; // Levenberg or Levenberg-Marquardt enum VMUpdateType {VM_DFP, VM_BFGS}; // See NRinC chapter 10. enum CGUpdateType {CG_FR, CG_PR}; // Fletcher-Reeves, Polak-Ribiere enum VMMatrixType {VM_OPT, // VM_COL, // Store all rank-one updates as column-vectors VM_FULL}; // Store full estimate of inverse Hessian enum LinOut {LM_MAXITER, // Too many iterations in line-minimisation LM_LAMBDA_NILL, // Could not find a minima along this direction LM_CONV}; // Line-minimisation converged. enum NonlinOut {NL_UNDEFINED, // Initial value before minimisation NL_MAXITER, // Too many iterations NL_LM_MAXITER, // To many iterations during a line-minimisation NL_PARCONV, // Convergence. Step in parameter space small NL_GRADCONV, // Convergence. Gradient small NL_CFCONV, // Convergence. Change in cost-function small NL_LCONV}; // Convergence, lambda very large const double EPS = 2.0e-16; // Losely based on NRinC 20.1 class NonlinException: public std::exception { private: std::string m_msg; public: NonlinException(const std::string& msg) throw(): m_msg(msg) {} virtual const char * what() const throw() { return string("Nonlin: msg=" + m_msg).c_str(); } ~NonlinException() throw() {} }; // NonlinParam is a struct that contains the // information about "how" the // minisation should be performed. I.e. it // contains things like choice of minimisation // algorithm, # of parameters, converegence // criteria etc class NonlinParam { public: NonlinParam(int pnpar, NLMethod pmtd, NEWMAT::ColumnVector ppar=NEWMAT::ColumnVector(), bool plogcf=false, bool ploglambda=false, bool plogpar=false, int pmaxiter=200, double pcftol=1.0e-8, double pgtol=1.0e-8, double pptol=4.0*EPS, VMUpdateType pvmut=VM_BFGS, double palpha=1.0e-4, double pstepmax=10, int plm_maxiter=50, int pmaxrestart=0, bool pautoscale=true, CGUpdateType pcgut=CG_PR, double plm_ftol=1.0e-3, LMType plmtype=LM_LM, double pltol=1.0e20, int pcg_maxiter=200, double pcg_tol=1.0e-6, double plambda=0.1) : npar(pnpar), mtd(pmtd), logcf(plogcf), loglambda(ploglambda), logpar(plogpar), maxiter(pmaxiter), cftol(pcftol), gtol(pgtol), ptol(pptol), vmut(pvmut), alpha(palpha), stepmax(pstepmax), lm_maxiter(plm_maxiter), maxrestart(pmaxrestart), autoscale(pautoscale), cgut(pcgut), lm_ftol(plm_ftol), lmtype(plmtype), ltol(pltol), cg_maxiter(pcg_maxiter), cg_tol(pcg_tol), lambda(), cf(), par(), niter(0), nrestart(0), status(NL_UNDEFINED) { lambda.push_back(plambda); if (ppar.Nrows()) SetStartingEstimate(ppar); else { NEWMAT::ColumnVector tmp(npar); tmp = 0.0; SetStartingEstimate(tmp); } } ~NonlinParam() {} // Routines to check values int NPar() const {return(npar);} NLMethod Method() const {return(mtd);} int MaxIter() const {return(maxiter);} int NIter() const {return(niter);} double FractionalCFTolerance() const {return(cftol);} double FractionalGradientTolerance() const {return(gtol);} double FractionalParameterTolerance() const {return(ptol);} VMUpdateType VariableMetricUpdate() const {return(vmut);} double VariableMetricAlpha() const {return(alpha);} int MaxVariableMetricRestarts() const {return(maxrestart);} int VariableMetricRestarts() const {return(nrestart);} bool VariableMetricAutoScale() const {return(autoscale);} double LineSearchMaxStep() const {return(stepmax);} int LineSearchMaxIterations() const {return(lm_maxiter);} CGUpdateType ConjugateGradientUpdate() const {return(cgut);} double LineSearchFractionalParameterTolerance() const {return(lm_ftol);} LMType GaussNewtonType() const {return(lmtype);} double LambdaConvergenceCriterion() const {return(ltol);} int EquationSolverMaxIter() const {return(cg_maxiter);} double EquationSolverTol() const {return(cg_tol);} bool LoggingParameters() const {return(logpar);} bool LoggingCostFunction() const {return(logcf);} bool LoggingLambda() const {return(loglambda);} // Routines to get output double Lambda() const {return(lambda.back());} double InitialLambda() const {if (loglambda) return(lambda[0]); else {throw NonlinException("InitialLabda: Lambda not logged"); return(0.0);}} const std::vector& LambdaHistory() const {if (loglambda) return(lambda); else {throw NonlinException("InitialLabda: Lambda not logged"); return(lambda);}} const NEWMAT::ColumnVector& Par() const {return(par.back());} const NEWMAT::ColumnVector& InitialPar() const {if (logpar) return(par[0]); else {throw NonlinException("InitialPar: Parameters not logged"); return(par[0]);}} const std::vector& ParHistory() const {if (logpar) return(par); else {throw NonlinException("ParHistory: Parameters not logged"); return(par);}} double CF() const {return(cf.back());} double InitialCF() const {if (logcf) return(cf[0]); else {throw NonlinException("InitialCF: Cost-function not logged"); return(cf[0]);}} const std::vector CFHistory() const {if (logcf) return(cf); else {throw NonlinException("CFHistory: Cost-function not logged"); return(cf);}} NonlinOut Status() const {return(status);} bool Success() const { switch(status) { case NL_UNDEFINED: case NL_MAXITER: case NL_LM_MAXITER: return(false); break; default: return(true); } }; std::string TextStatus() const; // Routines to set values of steering parameters void SetMethod(NLMethod pmtd) {mtd = pmtd;} void LogCF(bool flag=true) {logcf = flag;} void LogPar(bool flag=true) {logpar = flag;} void LogLambda(bool flag=true) {loglambda = flag;} void SetStartingEstimate(NEWMAT::ColumnVector& sp) { if (niter) throw NonlinException("SetStartingEstimates: Object has to be reset before setting new starting parameters"); SetPar(sp); } void SetMaxIter(unsigned int pmiter) {maxiter = pmiter;} void SetFractionalCFTolerance(double pcftol) { if (pcftol>0.5) throw NonlinException("SetFractionalCFTolerance: Nonsensically large tolerance"); else if (pcftol <= 0.0) NonlinException("SetFractionalCFTolerance: Tolerance must be non-zero and positive"); cftol = pcftol; } void SetFractionalGradientTolerance(double pgtol) { if (pgtol>0.5) throw NonlinException("SetFractionalGradientTolerance: Nonsensically large tolerance"); else if (pgtol <= 0.0) NonlinException("SetFractionalGradientTolerance: Tolerance must be non-zero and positive"); gtol = pgtol; } void SetFractionalParameterTolerance(double pptol) { if (pptol>0.5) throw NonlinException("SetFractionalParameterTolerance: Nonsensically large tolerance"); else if (pptol <= 0.0) NonlinException("SetFractionalParameterTolerance: Tolerance must be non-zero and positive"); ptol = pptol; } void SetVariableMetricUpdate(VMUpdateType pvmut) {vmut = pvmut;} void SetVariableMetricAlpha(double palpha) { if (palpha>=1.0 || palpha<=0.0) throw NonlinException("SetVariableMetricAlpha: Alpha must be between 0 and 1"); alpha = palpha; } void SetMaxVariableMetricRestarts(unsigned int pmaxrestart) {maxrestart = pmaxrestart;} void SetVariableMetricAutoScale(bool flag=true) {autoscale = flag;} void SetLineSearchMaxStep(double pstepmax) { if (pstepmax<=0) throw NonlinException("SetLineSearchMaxStep: maxstep must be non-zero and positive"); stepmax = pstepmax; } void SetLineMinimisationMaxIterations(unsigned int plm_maxiter) {lm_maxiter = plm_maxiter;} void SetConjugateGradientUpdate(CGUpdateType pcgut) {cgut = pcgut;} void SetLineMinimisationFractionalParameterTolerance(double plm_ftol) { if (plm_ftol>0.5) throw NonlinException("SetLineMinimisationFractionalParameterTolerance: Nonsensically large tolerance"); else if (plm_ftol <= 0.0) NonlinException("SetLineMinimisationFractionalParameterTolerance: Tolerance must be non-zero and positive"); lm_ftol = plm_ftol; } void SetGaussNewtonType(LMType plmtype) {lmtype = plmtype;} void SetLambdaConvergenceCriterion(double pltol) { if (pltol<1.0) throw NonlinException("SetLambdaConvergenceCriterion: Nonsensically small tolerance"); ltol = pltol; } void SetEquationSolverMaxIter(int pcg_maxiter) {cg_maxiter = pcg_maxiter;} void SetEquationSolverTol(double pcg_tol) {cg_tol = pcg_tol;} // Reset is used to reset a NonlinParam object after it has run to convergence, thereby allowing it // to be reused with a different CF object. This is to avoid the cost of creating the object many // times when fitting for example multiple voxels. void Reset() {} // Routines used by the (global) non-linear fitting routines. Note that these can // all be called for const objects. void SetPar(const NEWMAT::ColumnVector& p) const { if (p.Nrows() != npar) throw NonlinException("SetPar: Mismatch between starting vector and # of parameters"); if (logpar || !par.size()) par.push_back(p); else par[0] = p; } void SetCF(double pcf) const { if (logcf || !cf.size()) cf.push_back(pcf); else cf[0] = pcf; } void SetLambda(double pl) const { if (loglambda || !lambda.size()) lambda.push_back(pl); else lambda[0] = pl; } bool NextIter(bool success=true) const {if (success && niter++ >= maxiter) return(false); else return(true);} bool NextRestart() const {if (nrestart++ >= maxrestart) return(false); else return(true);} void SetStatus(NonlinOut pstatus) const {status = pstatus;} private: // INPUT PARAMETERS // // Paramaters that apply to all algorithms const int npar; // # of parameters NLMethod mtd; // Minimisation method bool logcf; // If true, history of cost-function is logged bool loglambda; // If true, history of lambda is logged bool logpar; // If true history of parameters is logged int maxiter; // Maximum # of iterations allowed double cftol; // Tolerance for cost-function gonvergence criterion double gtol; // Tolerance for gradient convergence criterion double ptol; // Tolerance for parameter convergence criterion // Parameters that apply to Variable-Metric Algorithm VMUpdateType vmut; // DFP or BFGS double alpha; // Criterion for convergence in line minimisation double stepmax; // Maximum step length for line minimisation int lm_maxiter; // Maximum # of iterations for line minimisation int maxrestart; // Maximum # of restarts that should be done. bool autoscale; // "Automatic" search for optimal scaling // Parameters that apply to CG algorithm CGUpdateType cgut; // Fletcher-Reeves or Polak-Ribiere double lm_ftol; // Convergence criterion for line-search // Parameters that apply to LM algorithm LMType lmtype; // Levenberg or Levenberg-Marquardt double ltol; // Convergence criterion based on large lambda int cg_maxiter; // Maximum # of iterations for iterative "inverse" of Hessian double cg_tol; // Tolerance for iterative "inverse" of Hessian // // OUTPUT PARAMETERS // mutable std::vector lambda; // (History of) lambda (LM and SCG type minimisation) mutable std::vector cf; // (History of) cost-function mutable std::vector par; // (History of) Parameter estimates mutable int niter; // Number of iterations mutable int nrestart; // Number of restarts mutable NonlinOut status; // Output status NonlinParam& operator=(const NonlinParam& rhs); // Hide assignment }; // NonlinCF (Cost Function) is a virtual // class that defines a minimal interface. // By subclassing NonlinCF the "user" can // create a class that allows him/her to // use NONLIN to minimise his/her function. class NonlinCF { private: NonlinCF& operator=(const NonlinCF& rhs); // Hide assignment public: NonlinCF() {} virtual ~NonlinCF() {} virtual double sf() const {return(1.0);} virtual NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const; virtual boost::shared_ptr hess(const NEWMAT::ColumnVector& p, boost::shared_ptr iptr=boost::shared_ptr()) const; virtual double cf(const NEWMAT::ColumnVector& p) const = 0; }; // Varmet matrix is a "helper" class // that makes it a little easier to // implement variable-metric minimisation. class VarmetMatrix { private: int sz; VMMatrixType mtp; VMUpdateType utp; NEWMAT::Matrix mat; std::vector sf; std::vector vec; VarmetMatrix& operator=(const VarmetMatrix& rhs); // Hide assignment public: explicit VarmetMatrix(int psz, VMMatrixType pmtp, VMUpdateType putp) : sz(psz), mtp(pmtp), utp(putp) { if (sz > 0 && mtp == VM_OPT) { if (sz < 100) { mtp = VM_FULL; NEWMAT::IdentityMatrix tmp(sz); mat = tmp; } else { mtp = VM_COL; } } } ~VarmetMatrix() {} int size() {return(sz);} VMUpdateType updatetype() {return(utp);} VMMatrixType matrixtype() {return(mtp);} void print() const; void reset() { if (sz > 0) { if (mtp == VM_FULL) { NEWMAT::IdentityMatrix tmp(sz); mat = tmp; } else if (mtp == VM_COL) { sf.clear(); vec.clear(); } } } void update(const NEWMAT::ColumnVector& pdiff, // x_{i+1} - x_i const NEWMAT::ColumnVector& gdiff); // \nabla f_{i+1} - \nabla f_i friend NEWMAT::ColumnVector operator*(const VarmetMatrix& m, const NEWMAT::ColumnVector& v); }; // Declaration of (global) main function for minimisation NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo); // Declaration of global utility functions pair check_grad(const NEWMAT::ColumnVector& par, const NonlinCF& cfo); pair,boost::shared_ptr > check_hess(const NEWMAT::ColumnVector& par, const NonlinCF& cfo); } // End namespace MISCMATHS #endif // end #ifndef nonlin_h