/* sparsefn.h Mark Woolrich, FMRIB Image Analysis Group Copyright (C) 1999-2000 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include #include #define WANT_STREAM #define WANT_MATH #include "sparse_matrix.h" #include "sparsefn.h" #include "newmatio.h" #include "newmat.h" #include "miscmaths.h" #include "utils/tracer_plus.h" using namespace std; using namespace NEWMAT; using namespace MISCMATHS; using namespace Utilities; namespace MISCMATHS { float quadratic(const ColumnVector& m, const SparseMatrix& C) { Tracer_Plus trace("sparsefns::quadratic"); // computes m'*C*m // assumes that C is symmetric float sum = 0; for(int j = 1; j<=m.Nrows(); j++) { // do diagonal sum += C(j,j)*m(j)*m(j); // do off-diagonal const SparseMatrix::Row& row = C.row(j); for(SparseMatrix::Row::const_iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; if(c>=j) break; double val = (*it).second; sum += 2*val*m(j)*m(c); } } return sum; } void speye(int n, SparseMatrix& ret) { ret.ReSize(n,n); for(int j = 1; j<=n; j++) { ret.insert(j,j,1); } } void addto(SparseMatrix::Row& A, const SparseMatrix::Row& B, float S) { // computes A = A+B*S if(S!=0) { for(SparseMatrix::Row::const_iterator it=B.begin();it!=B.end();it++) { int c = (*it).first; double val = (*it).second; A[c] += val*S; } } } void addto(SparseMatrix& A, const SparseMatrix& B, float S) { Tracer_Plus trace("sparsefns::addto"); // computes A+B*S if(S!=0) { for(int j = 1; j<=B.Nrows(); j++) { const SparseMatrix::Row& row = B.row(j); for(SparseMatrix::Row::const_iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second*S; A.addto(j,c,val); } } } } void symmetric_addto(SparseMatrix& A, const SparseMatrix& B, float S) { Tracer_Plus trace("sparsefns::symmetric_addto"); // computes A+B*S if(S!=0) { for(int j = 1; j<=B.Nrows(); j++) { const SparseMatrix::Row& row = B.row(j); A.addto(j,j,B(j,j)*S); for(SparseMatrix::Row::const_iterator it=row.lower_bound(j);it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second*S; A.addto(j,c,val); A.addto(c,j,val); } } } } void addto(SparseMatrix& A, const Matrix& B) { Tracer_Plus trace("sparsefns::addto2"); for(int r=1; r <= B.Nrows(); r++) for(int c=1; c <= B.Ncols(); c++) { if(B(r,c)!=0) A.addto(r,c,B(r,c)); } } void chol(const SparseMatrix& A, SparseMatrix& U, SparseMatrix& L) { Tracer_Plus trace("sparsefns::chol"); int length = A.Nrows(); U.ReSize(length,length); for(int j = 1; j<=length; j++) { const SparseMatrix::Row& rowAj = A.row(j); SparseMatrix::Row& rowUj = U.row(j); for(SparseMatrix::Row::const_iterator it=rowAj.lower_bound(j-1);it!=rowAj.end();it++) { int c = (*it).first; double val = (*it).second; rowUj[c] = val; } for(int k = 1; k<=j-1; k++) { SparseMatrix::Row& rowk = U.row(k); double Ukj = U(k,j); if(Ukj!=0) for(SparseMatrix::Row::iterator it=rowk.lower_bound(j-1);it!=rowk.end();it++) { int c = (*it).first+1; double val = (*it).second*Ukj; U.addto(j,c,-val); } } double sqrtUjj = std::sqrt(Max(U(j,j),1e-6)); for(SparseMatrix::Row::iterator it=rowUj.lower_bound(j-1);it!=rowUj.end();it++) { (*it).second /= sqrtUjj; } } U.transpose(L); } void inv(const SparseMatrix& U, const SparseMatrix& L, SparseMatrix& ret) { Tracer_Plus trace("sparsefns::inv"); // assumes A=LU is symmetric int length = U.Nrows(); ret.ReSize(length,length); SparseMatrix b; speye(length,b); for(int bi=1;bi<=b.Ncols();bi++) { // solve for y (L*y=b) ColumnVector y(length); y = 0; y(1) = b(1,bi)/L(1,1); bool compute = false; if(b(1,bi)!=0) compute = true; for(int r = 2; r<=length; r++) { if(!compute && b(r,bi)!=0) compute = true; if(compute) { float sum = 0.0; const SparseMatrix::Row& row = L.row(r); for(SparseMatrix::Row::const_iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; if(c > r-1) break; double val = (*it).second; sum += val*y(c); } y(r) = (b(r,bi)-sum)/L(r,r); } } // solve for x(bi) (U*x=y) ret.set(length,bi,y(length)/U(length,length)); compute = false; if(y(length)!=0) compute = true; // do not do rows which we already have from symmetry // therefore end at r=bi and not r=1 for(int r = length; r>=bi; r--) { if(!compute && y(r)!=0) compute = true; if(compute) { float sum = 0.0; const SparseMatrix::Row& row = U.row(r); for(SparseMatrix::Row::const_iterator it=row.lower_bound(r);it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second; sum += val*ret(c,bi); } ret.set(r,bi,(y(r)-sum)/U(r,r)); ret.set(bi,r,(y(r)-sum)/U(r,r)); } } } } void solvefortracex(const SparseMatrix& U, const SparseMatrix& L, const SparseMatrix& b1, const SparseMatrix& b2, float& tr1, float& tr2) { Tracer_Plus trace("sparsefns::solvefortracex"); int length = U.Nrows(); tr1 = 0.0; tr2 = 0.0; for(int bi=1;bi<=b1.Ncols();bi++) { // solve for y (L*y=b) ColumnVector y1(length); ColumnVector y2(length); y1 = 0; y2 = 0; y1(1) = b1(1,bi)/L(1,1); y2(1) = b2(1,bi)/L(1,1); bool compute1 = false; if(b1(1,bi)!=0) compute1 = true; bool compute2 = false; if(b2(1,bi)!=0) compute2 = true; for(int r = 2; r<=length; r++) { if(!compute1 && b1(r,bi)!=0) compute1 = true; if(!compute2 && b2(r,bi)!=0) compute2 = true; if(compute1 || compute2) { float sum1 = 0.0; float sum2 = 0.0; const SparseMatrix::Row& row = L.row(r); for(SparseMatrix::Row::const_iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; if(c > r-1) break; double val = (*it).second; if(compute1) sum1 += val*y1(c); if(compute2) sum2 += val*y2(c); } if(compute1) y1(r) = (b1(r,bi)-sum1)/L(r,r); if(compute2) y2(r) = (b2(r,bi)-sum2)/L(r,r); } } // solve for x(bi) (U*x=y) ColumnVector x1(length); ColumnVector x2(length); x1 = 0; x2 = 0; x1(length) = y1(length)/U(length,length); x2(length) = y2(length)/U(length,length); compute1 = false; if(y1(length)!=0) compute1 = true; compute2 = false; if(y2(length)!=0) compute2 = true; for(int r = length; r>=bi; r--) { if(!compute1 && y1(r)!=0) compute1 = true; if(!compute2 && y2(r)!=0) compute2 = true; if(compute1 || compute2) { float sum1 = 0.0; float sum2 = 0.0; const SparseMatrix::Row& row = U.row(r); for(SparseMatrix::Row::const_iterator it=row.lower_bound(r);it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second; if(compute1) sum1 += val*x1(c); if(compute2) sum2 += val*x2(c); } if(compute1) x1(r) = (y1(r)-sum1)/U(r,r); if(compute2) x2(r) = (y2(r)-sum2)/U(r,r); } } tr1 += x1(bi); tr2 += x2(bi); } } float solvefortracex(const SparseMatrix& A, const SparseMatrix& b, SparseMatrix& x, int nsamps, float tol) { Tracer_Plus trace("sparsefns::solvefortracex"); int every = Max(1,A.Ncols()/nsamps); // int every = 1; // OUT(every); float tr = 0.0; // assumes symmetric A and b for(int r = every; r<=A.Ncols(); r+=every) { // cout << float(r)/A.Ncols() << "\r"; // cout.flush(); ColumnVector br = b.RowAsColumn(r); ColumnVector xr = x.RowAsColumn(r); solveforx(A,br,xr,tol); for(int c = 1; c<=b.Ncols(); c++) { if(xr(c)!=0) { x.set(r,c,xr(c)); } } tr += xr(r); } cout << endl; tr *= every; return tr; } void solveforx(const SparseMatrix& A, const SparseMatrix& b, SparseMatrix& x) { Tracer_Plus trace("sparsefns::solveforx"); // assumes symmetric A and b for(int r = 1; r<=A.Ncols(); r++) { cout << float(r)/A.Ncols() << "\r"; cout.flush(); ColumnVector br = b.RowAsColumn(r); ColumnVector xr = x.RowAsColumn(r); solveforx(A,br,xr); for(int c = 1; c<=b.Ncols(); c++) { if(xr(c)!=0) { x.set(r,c,xr(c)); } } } cout << endl; } void solveforx(const SparseMatrix& A, const ColumnVector& b, ColumnVector& x, float tol, int kmax) { // // Algorithm based on Golub & van Loan, chapter 10, page 527. // Tracer_Plus trace("sparsefns::solveforx"); if(norm2(b)==0) { x = 0; } else { int k = 2; kmax = Max(b.Nrows(),kmax); ColumnVector tmp; multiply(A,x,tmp); ColumnVector r = b-tmp; ColumnVector rho(kmax); rho = Sqr(norm2(r)); ColumnVector w; ColumnVector p = r; while(std::sqrt(rho(k))>tol*norm2(b) && k < kmax) { k++; //if(k>2) p = r + p*rho(k-1)/rho(k-2); //else // p = r; // SparseMatrix::Row passparserow; // colvectosparserow(p,passparserow); // multiply(A,passparserow,w); multiply(A,p,w); float alpha = 0.0; //if(k>1) alpha = rho(k-1)/(p.t()*w).AsScalar(); //else //alpha = 1; x += alpha*p; r -= alpha*w; rho(k) = Sqr(norm2(r)); } if(k>kmax/2.0) { OUT(std::sqrt(rho(k-1))); OUT(norm2(b)); OUT(k); cout.flush(); } } // write_ascii_matrix("rho",rho); } void solveforx(const SparseMatrix& U, const SparseMatrix& L, const ColumnVector& b, ColumnVector& x) { Tracer_Plus trace("sparsefns::solveforx"); int length = U.Nrows(); x.ReSize(length); // solve for y (L*y=b) ColumnVector y(length); y = 0; y(1) = b(1)/L(1,1); bool compute = false; if(b(1)!=0) compute = true; for(int r = 2; r<=length; r++) { if(!compute && b(r)!=0) compute = true; if(compute) { float sum = 0.0; const SparseMatrix::Row& row = L.row(r); for(SparseMatrix::Row::const_iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; if(c > r-1) break; double val = (*it).second; sum += val*y(c); } y(r) = (b(r)-sum)/L(r,r); } } // solve for x (U*x=y) x(length) = y(length)/U(length,length); compute = false; if(y(length)!=0) compute = true; for(int r = length; r>=1; r--) { if(!compute && y(r)!=0) compute = true; if(compute) { float sum = 0.0; const SparseMatrix::Row& row = U.row(r); for(SparseMatrix::Row::const_iterator it=row.lower_bound(r);it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second; sum += val*x(c); } x(r) = (y(r)-sum)/U(r,r); } } } void solve(const SparseMatrix& A, const Matrix& b, SparseMatrix& x) { Tracer_Plus trace("sparsefns::solve"); int length = A.Nrows(); SparseMatrix U; SparseMatrix L; chol(A,U,L); x.ReSize(length,b.Ncols()); for(int bi=1;bi<=b.Ncols();bi++) { // solve for y (L*y=b) ColumnVector y(length); y = 0; y(1) = b(1,bi)/L(1,1); bool compute = false; if(b(1,bi)!=0) compute = true; for(int r = 2; r<=length; r++) { if(!compute && b(r,bi)!=0) compute = true; if(compute) { float sum = 0.0; SparseMatrix::Row& row = L.row(r); for(SparseMatrix::Row::iterator it=row.begin();it!=row.end();it++) { int c = (*it).first+1; if(c > r-1) break; double val = (*it).second; sum += val*y(c); } y(r) = (b(r,bi)-sum)/L(r,r); } } // solve for x (U*x=y) x.set(length,bi,y(length)/U(length,length)); compute = false; if(y(length)!=0) compute = true; for(int r = length; r>=1; r--) { if(!compute && y(r)!=0) compute = true; if(compute) { float sum = 0.0; SparseMatrix::Row& row = U.row(r); for(SparseMatrix::Row::iterator it=row.lower_bound(r);it!=row.end();it++) { int c = (*it).first+1; double val = (*it).second; sum += val*x(c,bi); } x.set(r,bi,(y(r)-sum)/U(r,r)); } } } } void cov(const ColumnVector& A, SparseMatrix& ret) { Tracer_Plus trace("sparsefns::cov"); ret.ReSize(A.Nrows(),A.Nrows()); for(int r=1; r <= A.Nrows(); r++) { // diagonal if(A(r) != 0) { ret.set(r,r,Sqr(A(r))); // off-diagonal for(int c=r+1; c <= A.Nrows(); c++) { if(A(c) != 0) { ret.set(r,c,A(r)*A(c)); ret.set(c,r,A(r)*A(c)); } } } } } }