/* b0calc.cc Mark Jenkinson, FMRIB Image Analysis Group Copyright (C) 2001 University of Oxford */ /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ // B0 Calculation program - intended for use with the Virtual Scanner #include #include #include "newimage/newimageall.h" #include "utils/options.h" #define _GNU_SOURCE 1 #define POSIX_SOURCE 1 using namespace Utilities; using namespace NEWIMAGE; // Global constants string title="b0calc \nB0 field calculation program\nCopyright(c) 2001, University of Oxford (Mark Jenkinson)"; string examples="b0calc -i -o [options]"; Option verbose(string("-v,--verbose"), false, string("switch on diagnostic messages"), false, no_argument); Option help(string("-h,--help"), false, string("display this message"), false, no_argument); Option calcxyz(string("--xyz"), false, string("calculate and save all 3 field components (i.e. x,y,z)"), false, no_argument); Option direct_conv(string("--directconv"), false, string("use direct (image space) convolution, not FFT"), false, no_argument); Option delta(string("-d"), -9.45e-6, // chi_tissue - chi_air string("Delta value (chi_tissue - chi_air): default=-9.45e-6"), false, requires_argument); Option chi0(string("--chi0"), +4e-7, // chi of air string("Value for susceptibility of air: default=+4e-7"), false, requires_argument); Option b0z(string("--b0"), 1.0, string("Value for zeroth-order b0 field (z-component): default=1"), false, requires_argument); Option b0x(string("--b0x"), 0.0, string("Value for zeroth-order b0 field (x-component): default=0"), false, requires_argument); Option b0y(string("--b0y"), 0.0, string("Value for zeroth-order b0 field (y-component): default=0"), false, requires_argument); Option gx(string("--gx"), 0.0, string("Value for zeroth-order x-gradient field (per mm): default=0"), false, requires_argument); Option gy(string("--gy"), 0.0, string("Value for zeroth-order y-gradient field (per mm): default=0"), false, requires_argument); Option gz(string("--gz"), 0.0, string("Value for zeroth-order z-gradient field (per mm): default=0"), false, requires_argument); Option extendboundary(string("--extendboundary"), 1.0, string("Relative proportion to extend voxels at boundary: default=1"), false, requires_argument); Option inname(string("-i,--in"), string(""), string("filename of input image (usually a tissue/air segmentation)"), true, requires_argument); Option outname(string("-o,--out"), string(""), string("filename of B0 output volume"), true, requires_argument); ///////////////////////////////////////////////////////////////////////////// // % Sphere simulation (including Lorentz Correction) // % cx=100; cy=100; cz=100; // % a = 60; // % [xs,ys,zs]=ndgrid((-(cx-1)):(cx-1),(-(cy-1)):(cy-1),(-(cz-1)):(cz-1)); // % rs=sqrt(xs.^2+ys.^2+zs.^2); // % mu=(rs<=a); // % mus=(round(rs)==a); % surface voxels // % musdotn=mus.*zs./max(rs,1e-8); % surface normals (in z) // % bztheory = (1-mu)/3.*(a^3).*(3*zs.^2 - rs.^2)./max((rs.^5) + mu,1e-8); ///////////////////////////////////////////////////////////////////////////// float arctan(float num, float den) { if (fabs(den)>1e-8) { return atan(num/den); } else { return atan2(num,den); } } float arcsinh(float num, float den) { if (fabs(den)>1e-8) { return asinh(num/den); } else { return log(num + sqrt(num*num + den*den)) - log(den); // uses asinh(x) = log(x + sqrt(x*x+1)) } } volume partbzkernel(const volume& obj, float xoff, float yoff, float zoff, const string& b0type) { // This function returns F(x';x) as described in the technical report // where xoff = x' - x , yoff = y' - y , etc int nx, ny, nz; nx = obj.xsize(); ny = obj.ysize(); nz = obj.zsize(); float dx, dy, dz; dx = obj.xdim(); dy = obj.ydim(); dz = obj.zdim(); volume kernel(2*nx-1,2*ny-1,2*nz-1); for (int z1=-(nz-1); z1<=(nz-1); z1++) { for (int y1=-(ny-1); y1<=(ny-1); y1++) { for (int x1=-(nx-1); x1<=(nx-1); x1++) { // the following are x' in F(x';x) (as always use F(x+offset;x)) float x = x1*dx+xoff, y = y1*dy+yoff, z = z1*dz+zoff; float r = sqrt(x*x + y*y + z*z); if (b0type=="0,0,1") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = arctan(x*y,z*r); } else if (b0type=="1,0,0") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = -arcsinh(y,sqrt(x*x+z*z)); } else if (b0type=="0,1,0") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = -arcsinh(x,sqrt(y*y+z*z)); } else if (b0type=="z,0,x") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = (x-xoff)*arctan(x*y,z*r) + x*arctan(z*y,x*r) + zoff*arcsinh(y,sqrt(x*x+z*z)) - y*arcsinh(z,sqrt(y*y+x*x)); } else if (b0type=="0,z,y") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = (y-yoff)*arctan(x*y,z*r) + y*arctan(z*x,y*r) + zoff*arcsinh(x,sqrt(y*y+z*z)) - x*arcsinh(z,sqrt(y*y+x*x)); } else if (b0type=="-x,0,z") { kernel(x1+nx-1,y1+ny-1,z1+nz-1) = -xoff*arcsinh(y,sqrt(x*x+z*z)) -zoff*arctan(x*y,z*r); } else { cerr << "Unknown b0 type requested:: " << b0type << endl; exit(-1); } } } } cerr << "." << endl; // apply 1/(4*pi) factor - as it is more efficient here kernel *= 1.0/(4.0*M_PI); return kernel; } volume calculate_kernel(const volume& obj, const string& b0type="0,0,1") { // Combines the partial voxel Bz solutions to get a full solution // Answer is for position x,y,z (relative to voxel centre) // given a voxel of size (dx,dy,dz) cout << "Calculating kernel" << endl; float dx2, dy2, dz2; dx2 = obj.xdim()/2.0; dy2 = obj.ydim()/2.0; dz2 = obj.zdim()/2.0; volume kernel; kernel = partbzkernel(obj,dx2,dy2,dz2,b0type); kernel -= partbzkernel(obj,-dx2,dy2,dz2,b0type); kernel -= partbzkernel(obj,dx2,-dy2,dz2,b0type); kernel -= partbzkernel(obj,dx2,dy2,-dz2,b0type); kernel += partbzkernel(obj,dx2,-dy2,-dz2,b0type); kernel += partbzkernel(obj,-dx2,dy2,-dz2,b0type); kernel += partbzkernel(obj,-dx2,-dy2,dz2,b0type); kernel -= partbzkernel(obj,-dx2,-dy2,-dz2,b0type); return kernel; } ///////////////////////////////////////////////////////////////////////////// volume gradientfield(const volume& chi, const string& dir) { int nx, ny, nz; nx = chi.xsize()/2; ny = chi.ysize()/2; nz = chi.zsize()/2; float dx, dy, dz; dx = chi.xdim(); dy = chi.ydim(); dz = chi.zdim(); volume gfield; gfield = chi * 0.0f; for (int z1=0; z1 convolve3_complex(const volume& chi, const volume& kernel, complexvolume& kernelc) { // assumes that kernel has size >= (2*nx-1,2*ny-1,2*nz-1) // also uses kernelc unless it has the wrong size int nx,ny,nz; nx = chi.xsize(); ny=chi.ysize(); nz=chi.zsize(); complexvolume chi1c; cout << "zero pad" << endl; chi1c.re() = kernel*0.0f; chi1c.im() = chi1c.re(); chi1c.re().setROIlimits(0,0,0,nx-1,ny-1,nz-1); chi1c.re().activateROI(); chi1c.re().copyROIonly(chi); chi1c.re().deactivateROI(); cout << "Forward FFT" << endl; fft3(chi1c); { if (!samesize(kernelc.re(),kernel)) { cout << "Forward FFT" << endl; kernelc.re() = kernel; kernelc.im() = kernel*0.0f; fft3(kernelc); } cout << "Kernel multiplication" << endl; { volume tmp; tmp = chi1c.re() * kernelc.re() - chi1c.im() * kernelc.im(); chi1c.im() = chi1c.re() * kernelc.im() + chi1c.im() * kernelc.re(); chi1c.re() = tmp; } // destroy tmp } // destroy kernelc cout << "Inverse FFT" << endl; ifft3(chi1c); cout << "select ROI" << endl; chi1c.re().setROIlimits(nx-1,ny-1,nz-1,2*nx-2,2*ny-2,2*nz-2); chi1c.re().activateROI(); volume bz; bz = chi*0.0f; bz.copyROIonly(chi1c.re()); return bz; } volume direct_convolve(const volume& source, const volume& kernel) { extrapolation oldex = source.getextrapolationmethod(); if ((oldex==boundsassert) || (oldex==boundsexception)) { source.setextrapolationmethod(constpad); } if ( (( (kernel.maxz() - kernel.minz()) % 2)==1) || (( (kernel.maxy() - kernel.miny()) % 2)==1) || (( (kernel.maxx() - kernel.minx()) % 2)==1) ) { cerr << "WARNING:: Off-centre convolution being performed as kernel" << " has even dimensions" << endl; } volume result(source); result = 0.0f; int midx, midy, midz; midz=(kernel.maxz() - kernel.minz())/2; midy=(kernel.maxy() - kernel.miny())/2; midx=(kernel.maxx() - kernel.minx())/2; for (int z=source.minz(); z<=source.maxz(); z++) { for (int y=source.miny(); y<=source.maxy(); y++) { for (int x=source.minx(); x<=source.maxx(); x++) { if (source(x,y,z)>0.0) { for (int mz=kernel.minz(); mz<=kernel.maxz(); mz++) { for (int my=kernel.miny(); my<=kernel.maxy(); my++) { for (int mx=kernel.minx(); mx<=kernel.maxx(); mx++) { result(x+mx-midx,y+my-midy,z+mz-midz) += kernel(mx,my,mz); } } } } } } } source.setextrapolationmethod(oldex); return result; } volume convolve3(const volume& chi, const volume& kernel, complexvolume& kernelc) { if (direct_conv.value()) { return direct_convolve(chi,kernel); } return convolve3_complex(chi,kernel,kernelc); } ///////////////////////////////////////////////////////////////////////////// volume4D BzField(const volume4D& chi1, float gx, float gy, float gz, float b0x, float b0y, float b0z) { // Implements the first order perturbation solution which is: // Bz(1) = delta/(1+chi0) . ( (1+chi0)/(3+chi0) . chi1.Bz(0) - { ... // (d2G/dxdz)*(chi1.Bx(0)) + ... // (d2G/dydz)*(chi1.By(0)) + (d2G/dz2)*(chi1.Bz(0)) } ) // NOTE: 1/3 in first term comes from using the Lorentz Correction // which is -2/3 . (chi / (1 + chi)) . Bz cout << "Calculating Bz field" << endl; volume4D bz; volume kernel, chi1b0; complexvolume fftkernel, dummy; string kernelstr=""; float tol = 0.001*fabs(delta.value())*fabs(b0z); for (int t=chi1.mint(); t<=chi1.maxt(); t++) { // Start with the (1/(3+chi0) * chi1 * B_0(z)) term (non-convolved) bz.addvolume(b0z * chi1[t] / (3.0 + chi0.value()) * (1 + chi0.value())); if (fabs(gx)>tol) bz[t] += gx * gradientfield(chi1[t],"x")* chi1[t]; if (fabs(gy)>tol) bz[t] += gy * gradientfield(chi1[t],"y")* chi1[t]; if (fabs(gz)>tol) bz[t] += gz * gradientfield(chi1[t],"z")* chi1[t]; // convolve appropriate kernels and B_0*chi1 terms // x-gradient term if (fabs(gx)>tol) { if (kernelstr != "z,0,x") { kernelstr = "z,0,x"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= gx * convolve3(chi1[t],kernel,fftkernel); } // y-gradient term if (fabs(gy)>tol) { if (kernelstr != "0,z,y") { kernelstr = "0,z,y"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= gy * convolve3(chi1[t],kernel,fftkernel); } // z-gradient term if (fabs(gz)>tol) { if (kernelstr != "-x,0,z") { kernelstr = "-x,0,z"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= gz * convolve3(chi1[t],kernel,fftkernel); } // constant B_x term if (Max(fabs(b0x),Max(fabs(gx),fabs(gz)))>tol) { chi1b0 = b0x * chi1[t]; if (fabs(gx)>tol) chi1b0 += gx * gradientfield(chi1[t],"z")* chi1[t]; if (fabs(gz)>tol) chi1b0 -= gz * gradientfield(chi1[t],"x")* chi1[t]; if (kernelstr != "1,0,0") { kernelstr = "1,0,0"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= convolve3(chi1b0,kernel,fftkernel); } // constant B_y term if (Max(fabs(b0y),fabs(gy))>tol) { chi1b0 = b0y * chi1[t]; if (fabs(gy)>tol) chi1b0 += gy * gradientfield(chi1[t],"z")* chi1[t]; if (kernelstr != "0,1,0") { kernelstr = "0,1,0"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= convolve3(chi1b0,kernel,fftkernel); } // constant B_z term if (Max(fabs(b0z),Max(fabs(gx),Max(fabs(gy),fabs(gz))))>tol) { chi1b0 = b0z * chi1[t]; if (fabs(gx)>tol) chi1b0 += gx * gradientfield(chi1[t],"x")* chi1[t]; if (fabs(gy)>tol) chi1b0 += gy * gradientfield(chi1[t],"y")* chi1[t]; if (fabs(gz)>tol) chi1b0 += gz * gradientfield(chi1[t],"z")* chi1[t]; if (kernelstr != "0,0,1") { kernelstr = "0,0,1"; kernel = calculate_kernel(chi1[t],kernelstr); fftkernel = dummy; } bz[t] -= convolve3(chi1b0,kernel,fftkernel); } } // multiply everything by for delta/(1+chi0) (first order general coefficient) bz *= (delta.value()/(1.0 + chi0.value())); return bz; } volume4D BzField(const volume4D& chi1) { return BzField(chi1,gx.value(),gy.value(),gz.value(), b0x.value(),b0y.value(),b0z.value()); } volume4D ByField(volume4D& chi1) // chi1 is const (but needs swapping) { volume4D by; // flip object axes chi1.swapdimensions(3,1,2); by = BzField(chi1,gz.value(),gx.value(),gy.value(), b0z.value(),b0x.value(),b0y.value()); // restore original axes chi1.swapdimensions(2,3,1); by.swapdimensions(2,3,1); return by; } volume4D BxField(volume4D& chi1) // chi1 is const (but needs swapping) { volume4D bx; // flip object axes chi1.swapdimensions(2,3,1); bx = BzField(chi1,gy.value(),gz.value(),gx.value(), b0y.value(),b0z.value(),b0x.value()); // restore original axes chi1.swapdimensions(3,1,2); bx.swapdimensions(3,1,2); return bx; } ///////////////////////////////////////////////////////////////////////////// int do_calculation() { volume4D bz, chi; read_volume4D(chi,inname.value()); if (calcxyz.value()) { bz.addvolume(BxField(chi)); } if (calcxyz.value()) { bz.addvolume(ByField(chi)); } bz.addvolume(BzField(chi)); save_volume4D(bz,outname.value()); return 0; } ///////////////////////////////////////////////////////////////////////////// int main(int argc, char* argv[]) { OptionParser options(title, examples); try { options.add(inname); options.add(outname); options.add(gx); options.add(gy); options.add(gz); options.add(b0x); options.add(b0y); options.add(b0z); options.add(delta); options.add(chi0); options.add(calcxyz); options.add(extendboundary); options.add(direct_conv); options.add(verbose); options.add(help); options.parse_command_line(argc, argv); if ( (help.value()) || (!options.check_compulsory_arguments(true)) ) { options.usage(); exit(EXIT_FAILURE); } } catch(X_OptionError& e) { options.usage(); cerr << endl << e.what() << endl; exit(EXIT_FAILURE); } catch(std::exception &e) { cerr << e.what() << endl; } return do_calculation(); }