// Definitions of class used to decode and // read files written by fnirt, and potentially // by other pieces of software as long as they // are valid displacement-field files. // // fnirt_file_reader.cpp // // Jesper Andersson, FMRIB Image Analysis Group // // Copyright (C) 2007-2012 University of Oxford // /* Part of FSL - FMRIB's Software Library http://www.fmrib.ox.ac.uk/fsl fsl@fmrib.ox.ac.uk Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, Oxford, UK LICENCE FMRIB Software Library, Release 5.0 (c) 2012, The University of Oxford (the "Software") The Software remains the property of the University of Oxford ("the University"). The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope that it will be useful, but in order that the University as a charitable foundation protects its assets for the benefit of its educational and research purposes, the University makes clear that no condition is made or to be implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it will be suitable for any particular purpose or for use under any specific conditions. Furthermore, the University disclaims all responsibility for the use which is made of the Software. It further disclaims any liability for the outcomes arising from using the Software. The Licensee agrees to indemnify the University and hold the University harmless from and against any and all claims, damages and liabilities asserted by third parties (including claims for negligence) which arise directly or indirectly from the use of the Software or the sale of any products based on the Software. No part of the Software may be reproduced, modified, transmitted or transferred in any form or by any means, electronic or mechanical, without the express permission of the University. The permission of the University is not required if the said reproduction, modification, transmission or transference is done without financial return, the conditions of this Licence are imposed upon the receiver of the product, and all original and amended source code is included in any transmitted product. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by these terms and conditions. You are not permitted under this Licence to use this Software commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. If you are interested in using the Software commercially, please contact Isis Innovation Limited ("Isis"), the technology transfer company of the University, to negotiate a licence. Contact details are: innovation@isis.ox.ac.uk quoting reference DE/9564. */ #include #include #include #include "newmat.h" #ifndef EXPOSE_TREACHEROUS #define EXPOSE_TREACHEROUS // To allow us to use .sampling_mat() #endif #include "newimage/newimageall.h" #include "warpfns.h" #include "basisfield/basisfield.h" #include "basisfield/splinefield.h" #include "basisfield/dctfield.h" #include "fnirt_file_reader.h" using namespace std; using namespace NEWMAT; using namespace BASISFIELD; using namespace boost; namespace NEWIMAGE { ///////////////////////////////////////////////////////////////////// // // Copy constructor // ///////////////////////////////////////////////////////////////////// FnirtFileReader::FnirtFileReader(const FnirtFileReader& src) : _fname(src._fname), _type(src._type), _aff(src._aff), _coef_rep(3) { for (unsigned int i=0; i(*(src._coef_rep[i])); _coef_rep[i] = shared_ptr(new splinefield(tmpref)); } } if (_type == FnirtDCTDispType) { if (src._coef_rep[i]) { const dctfield& tmpref = dynamic_cast(*(src._coef_rep[i])); _coef_rep[i] = shared_ptr(new dctfield(tmpref)); } } } if (src._vol_rep) _vol_rep = shared_ptr >(new volume4D(*(src._vol_rep))); } ///////////////////////////////////////////////////////////////////// // // Return matrix-size of field // ///////////////////////////////////////////////////////////////////// vector FnirtFileReader::FieldSize() const { vector ret(3,0); switch (_type) { case FnirtFieldDispType: case UnknownDispType: ret[0] = static_cast(_vol_rep->xsize()); ret[1] = static_cast(_vol_rep->ysize()); ret[2] = static_cast(_vol_rep->zsize()); break; case FnirtSplineDispType: case FnirtDCTDispType: ret[0] = _coef_rep[0]->FieldSz_x(); ret[1] = _coef_rep[0]->FieldSz_y(); ret[2] = _coef_rep[0]->FieldSz_z(); break; default: throw FnirtFileReaderException("FieldSize: Invalid _type"); } return(ret); } ///////////////////////////////////////////////////////////////////// // // Return voxel-size of field // ///////////////////////////////////////////////////////////////////// vector FnirtFileReader::VoxelSize() const { vector ret(3,0); switch (_type) { case FnirtFieldDispType: case UnknownDispType: ret[0] = _vol_rep->xdim(); ret[1] = _vol_rep->ydim(); ret[2] = _vol_rep->zdim(); break; case FnirtSplineDispType: case FnirtDCTDispType: ret[0] = _coef_rep[0]->Vxs_x(); ret[1] = _coef_rep[0]->Vxs_y(); ret[2] = _coef_rep[0]->Vxs_z(); break; default: throw FnirtFileReaderException("VoxelSize: Invalid _type"); } return(ret); } ///////////////////////////////////////////////////////////////////// // // Return knot-spacing provided field is splinefield // ///////////////////////////////////////////////////////////////////// vector FnirtFileReader::KnotSpacing() const { if (_type == FnirtSplineDispType) { vector ret(3,0); const splinefield& tmp = dynamic_cast(*(_coef_rep[0])); ret[0] = tmp.Ksp_x(); ret[1] = tmp.Ksp_y(); ret[2] = tmp.Ksp_z(); return(ret); } else { throw FnirtFileReaderException("KnotSpacing: Field not a splinefield"); } } ///////////////////////////////////////////////////////////////////// // // Return spline order provided field is splinefield // ///////////////////////////////////////////////////////////////////// unsigned int FnirtFileReader::SplineOrder() const { if (_type == FnirtSplineDispType) { const splinefield& tmp = dynamic_cast(*(_coef_rep[0])); return(tmp.Order()); } else { throw FnirtFileReaderException("KnotSpacing: Field not a splinefield"); } } ///////////////////////////////////////////////////////////////////// // // Return DCT-order provided field is dctfield // ///////////////////////////////////////////////////////////////////// vector FnirtFileReader::DCTOrder() const { vector ret(3,0); switch (_type) { case FnirtFieldDispType: case UnknownDispType: case FnirtSplineDispType: throw FnirtFileReaderException("DCTOrder: Field not a dctfield"); break; case FnirtDCTDispType: ret[0] = _coef_rep[0]->CoefSz_x(); ret[1] = _coef_rep[0]->CoefSz_y(); ret[2] = _coef_rep[0]->CoefSz_z(); break; default: throw FnirtFileReaderException("DCTOrder: Invalid _type"); } return(ret); } ///////////////////////////////////////////////////////////////////// // // Return field as a NEWMAT matrix/vector. Optionally with the affine // part of the transform included in the field. // ///////////////////////////////////////////////////////////////////// ReturnMatrix FnirtFileReader::FieldAsNewmatMatrix(int indx, bool inc_aff) const { if (indx > 2) throw FnirtFileReaderException("FieldAsNewmatMatrix: indx out of range"); if (indx == -1) { // Means we want full 4D shabang volume4D volfield = FieldAsNewimageVolume4D(inc_aff); Matrix omat(volfield.nvoxels(),3); for (unsigned int i=0; i<3; i++) omat.Column(i+1) = volfield[i].vec(); omat.Release(); return(omat); } else { volume volfield = FieldAsNewimageVolume(indx,inc_aff); ColumnVector omat = volfield.vec(); omat.Release(); return(omat); } } ///////////////////////////////////////////////////////////////////// // // Return one of the three "fields" as NEWIMAGE volume. // Optionally with the affine part of the transform included in the field. // ///////////////////////////////////////////////////////////////////// volume FnirtFileReader::FieldAsNewimageVolume(unsigned int indx, bool inc_aff) const { if (indx > 2) throw FnirtFileReaderException("FieldAsNewimageVolume: indx out of range"); volume vol(FieldSize()[0],FieldSize()[1],FieldSize()[2]); switch (_type) { case FnirtFieldDispType: case UnknownDispType: vol=(*_vol_rep)[indx]; if (inc_aff) add_affine_part(_aff,indx,vol); return(vol); break; case FnirtSplineDispType: case FnirtDCTDispType: vol.setdims(VoxelSize()[0],VoxelSize()[1],VoxelSize()[2]); _coef_rep[indx]->AsVolume(vol); if (inc_aff) add_affine_part(_aff,indx,vol); return(vol); break; default: throw FnirtFileReaderException("FieldAsNewimageVolume: Invalid _type"); } } ///////////////////////////////////////////////////////////////////// // // Return field as 4D volume. Optionally with the affine // part of the transform included in the field. // ///////////////////////////////////////////////////////////////////// volume4D FnirtFileReader::FieldAsNewimageVolume4D(bool inc_aff) const { volume4D vol(FieldSize()[0],FieldSize()[1],FieldSize()[2],3); switch (_type) { case FnirtFieldDispType: case UnknownDispType: vol = *_vol_rep; for (unsigned int i=0; i<3; i++) { if (inc_aff) add_affine_part(_aff,i,vol[i]); } return(vol); break; case FnirtSplineDispType: case FnirtDCTDispType: vol.setdims(VoxelSize()[0],VoxelSize()[1],VoxelSize()[2],1.0); for (unsigned int i=0; i<3; i++) { _coef_rep[i]->AsVolume(vol[i]); if (inc_aff) add_affine_part(_aff,i,vol[i]); } return(vol); break; default: throw FnirtFileReaderException("FieldAsNewimageVolume4D: Invalid _type"); } } ///////////////////////////////////////////////////////////////////// // // Return the Jacobian determinant of the field as a NEWIMAGE volume. // ///////////////////////////////////////////////////////////////////// volume FnirtFileReader::Jacobian(bool inc_aff) const { if (_type==FnirtFieldDispType || _type==UnknownDispType) { throw FnirtFileReaderException("Jacobian: Not yet implemented for non-basis representations"); } else if (_type==FnirtSplineDispType || _type==FnirtDCTDispType) { volume jac(FieldSize()[0],FieldSize()[1],FieldSize()[2]); jac.setdims(VoxelSize()[0],VoxelSize()[1],VoxelSize()[2]); if (inc_aff) deffield2jacobian(*(_coef_rep[0]),*(_coef_rep[1]),*(_coef_rep[2]),AffineMat(),jac); else deffield2jacobian(*(_coef_rep[0]),*(_coef_rep[1]),*(_coef_rep[2]),jac); return(jac); } else throw FnirtFileReaderException("Jacobian: Invalid _type"); } ///////////////////////////////////////////////////////////////////// // // Return field as an instance of splinefield class. // ///////////////////////////////////////////////////////////////////// splinefield FnirtFileReader::FieldAsSplinefield(unsigned int indx, vector ksp, unsigned int order) const { if (!ksp.size() && _type != FnirtSplineDispType) { throw FnirtFileReaderException("FieldAsSplineField: Must specify ksp if spline is not native type"); } if (indx > 2) throw FnirtFileReaderException("FieldAsSplineField: indx out of range"); if (_type == FnirtSplineDispType) { if ((!ksp.size() || ksp==KnotSpacing()) && (!order || order==SplineOrder())) { const splinefield& tmpref = dynamic_cast(*(_coef_rep[indx])); return(tmpref); } else { if (!order || order==SplineOrder()) { // If we are keeping the order order = SplineOrder(); shared_ptr tmpptr = _coef_rep[indx]->ZoomField(FieldSize(),VoxelSize(),ksp); const splinefield& tmpref = dynamic_cast(*tmpptr); return(tmpref); } else { // New order and (possibly) ksp volume vol(FieldAsNewimageVolume(indx)); splinefield rval(FieldSize(),VoxelSize(),ksp,order); rval.Set(vol); return(rval); } } } else { if (!order) order = 3; // Cubic splines default volume vol(FieldAsNewimageVolume(indx)); splinefield rval(FieldSize(),VoxelSize(),ksp,order); rval.Set(vol); return(rval); } } ///////////////////////////////////////////////////////////////////// // // Return field as an instance of dctfield class. // ///////////////////////////////////////////////////////////////////// dctfield FnirtFileReader::FieldAsDctfield(unsigned int indx, vector order) const { if (!order.size() && _type != FnirtDCTDispType) { throw FnirtFileReaderException("FieldAsDctfield: Must specify order if DCT is not native type"); } if (indx > 2) throw FnirtFileReaderException("FieldAsSplineField: indx out of range"); shared_ptr > volp; shared_ptr rvalp; if (_type == FnirtDCTDispType) { if (!order.size() || order==DCTOrder()) { const dctfield& tmpref = dynamic_cast(*(_coef_rep[indx])); return(tmpref); } else { shared_ptr tmpptr = _coef_rep[indx]->ZoomField(FieldSize(),VoxelSize(),order); const dctfield& tmpref = dynamic_cast(*tmpptr); return(tmpref); } } else { volume vol(FieldAsNewimageVolume(indx)); dctfield rval(FieldSize(),VoxelSize(),order); rval.Set(vol); return(rval); } } ///////////////////////////////////////////////////////////////////// // // Here starts globally declared "helper" routine. // ///////////////////////////////////////////////////////////////////// void deffield2jacobian(const BASISFIELD::basisfield& dx, const BASISFIELD::basisfield& dy, const BASISFIELD::basisfield& dz, volume& jac) { NEWMAT::IdentityMatrix eye(4); deffield2jacobian(dx,dy,dz,eye,jac); } void deffield2jacobian(const BASISFIELD::basisfield& dx, const BASISFIELD::basisfield& dy, const BASISFIELD::basisfield& dz, const NEWMAT::Matrix& aff, volume& jac) { const boost::shared_ptr dxdx = dx.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dxdy = dx.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dxdz = dx.Get(BASISFIELD::FieldIndex(3)); const boost::shared_ptr dydx = dy.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dydy = dy.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dydz = dy.Get(BASISFIELD::FieldIndex(3)); const boost::shared_ptr dzdx = dz.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dzdy = dz.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dzdz = dz.Get(BASISFIELD::FieldIndex(3)); NEWMAT::Matrix iaff = aff.i(); double a11=iaff(1,1), a21=iaff(2,1), a31=iaff(3,1); double a12=iaff(1,2), a22=iaff(2,2), a32=iaff(3,2); double a13=iaff(1,3), a23=iaff(2,3), a33=iaff(3,3); for (unsigned int indx=0, k=0; kelement(indx)) * (a22+(1.0/dy.Vxs_y())*dydy->element(indx)) * (a33+(1.0/dz.Vxs_z())*dzdz->element(indx)); jac(i,j,k) += (a12+(1.0/dx.Vxs_y())*dxdy->element(indx)) * (a23+(1.0/dy.Vxs_z())*dydz->element(indx)) * (a31+(1.0/dz.Vxs_x())*dzdx->element(indx)); jac(i,j,k) += (a13+(1.0/dx.Vxs_z())*dxdz->element(indx)) * (a21+(1.0/dy.Vxs_x())*dydx->element(indx)) * (a32+(1.0/dz.Vxs_y())*dzdy->element(indx)); jac(i,j,k) -= (a31+(1.0/dz.Vxs_x())*dzdx->element(indx)) * (a22+(1.0/dy.Vxs_y())*dydy->element(indx)) * (a13+(1.0/dx.Vxs_z())*dxdz->element(indx)); jac(i,j,k) -= (a32+(1.0/dz.Vxs_y())*dzdy->element(indx)) * (a23+(1.0/dy.Vxs_z())*dydz->element(indx)) * (a11+(1.0/dx.Vxs_x())*dxdx->element(indx)); jac(i,j,k) -= (a33+(1.0/dz.Vxs_z())*dzdz->element(indx)) * (a21+(1.0/dy.Vxs_x())*dydx->element(indx)) * (a12+(1.0/dx.Vxs_y())*dxdy->element(indx)); indx++; } } } } /* void deffield2jacobian(const BASISFIELD::basisfield& dx, const BASISFIELD::basisfield& dy, const BASISFIELD::basisfield& dz, volume& jac) { const boost::shared_ptr dxdx = dx.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dxdy = dx.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dxdz = dx.Get(BASISFIELD::FieldIndex(3)); const boost::shared_ptr dydx = dy.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dydy = dy.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dydz = dy.Get(BASISFIELD::FieldIndex(3)); const boost::shared_ptr dzdx = dz.Get(BASISFIELD::FieldIndex(1)); const boost::shared_ptr dzdy = dz.Get(BASISFIELD::FieldIndex(2)); const boost::shared_ptr dzdz = dz.Get(BASISFIELD::FieldIndex(3)); for (unsigned int indx=0, k=0; kelement(indx)) * (1.0+(1.0/dy.Vxs_y())*dydy->element(indx)) * (1.0+(1.0/dz.Vxs_z())*dzdz->element(indx)); jac(i,j,k) += (1.0/dx.Vxs_y())*dxdy->element(indx) * (1.0/dy.Vxs_z())*dydz->element(indx) * (1.0/dz.Vxs_x())*dzdx->element(indx); jac(i,j,k) += (1.0/dx.Vxs_z())*dxdz->element(indx) * (1.0/dy.Vxs_x())*dydx->element(indx) * (1.0/dz.Vxs_y())*dzdy->element(indx); jac(i,j,k) -= (1.0/dz.Vxs_x())*dzdx->element(indx) * (1.0+(1.0/dy.Vxs_y())*dydy->element(indx)) * (1.0/dx.Vxs_z())*dxdz->element(indx); jac(i,j,k) -= (1.0/dz.Vxs_y())*dzdy->element(indx) * (1.0/dy.Vxs_z())*dydz->element(indx) * (1.0+(1.0/dx.Vxs_x())*dxdx->element(indx)); jac(i,j,k) -= (1.0+(1.0/dz.Vxs_z())*dzdz->element(indx)) * (1.0/dy.Vxs_x())*dydx->element(indx) * (1.0/dx.Vxs_y())*dxdy->element(indx); indx++; } } } } */ void add_or_remove_affine_part(const NEWMAT::Matrix& aff, unsigned int indx, bool add, NEWIMAGE::volume& warps) { if (indx > 2) throw FnirtFileReaderException("add_affine_part: indx out of range"); if ((aff-IdentityMatrix(4)).MaximumAbsoluteValue() > 1e-6) { Matrix M = (aff.i() - IdentityMatrix(4)) * warps.sampling_mat(); ColumnVector mr(4); for (unsigned int i=1; i<=4; i++) mr(i) = M(indx+1,i); ColumnVector xv(4); int zs = warps.zsize(), ys = warps.ysize(), xs = warps.xsize(); xv(4) = 1.0; for (int z=0; z& warps) { add_or_remove_affine_part(aff,indx,true,warps); } void remove_affine_part(const NEWMAT::Matrix& aff, unsigned int indx, NEWIMAGE::volume& warps) { add_or_remove_affine_part(aff,indx,false,warps); } ///////////////////////////////////////////////////////////////////// // // Estimates an affine component as an "average" of the non-linear // warps. Useful when one need to divide a "non-fnirt" field into // an affine and a non-linear part. // This can be coded MUCH more efficiently if it turns out to // take a significant time/memory. // ///////////////////////////////////////////////////////////////////// NEWMAT::Matrix estimate_affine_part(NEWIMAGE::volume4D& warps, unsigned int every) { NEWMAT::Matrix B = warps.sampling_mat(); double b11, b12, b13, b14; double b21, b22, b23, b24; double b31, b32, b33, b34; b11=B(1,1); b12=B(1,2); b13=B(1,3); b14=B(1,4); b21=B(2,1); b22=B(2,2); b23=B(2,3); b24=B(2,4); b31=B(3,1); b32=B(3,2); b33=B(3,3); b34=B(3,4); NEWMAT::Matrix aff(4,4); aff = 0.0; aff(4,4) = 1.0; // Create "design matrix" NEWMAT::Matrix X(warps.xsize()*warps.ysize()*warps.zsize(),4); NEWMAT::RowVector yp(warps.xsize()*warps.ysize()*warps.zsize()); for (int k=0, n=0; k vol; read_volume4D(vol,fname); if (vol.tsize() != 3) throw FnirtFileReaderException("FnirtFileReader: Displacement fields must contain 3 volumes"); Matrix qform; // Take appropriate action depending on intent code of volume switch (vol.intent_code()) { case FSL_CUBIC_SPLINE_COEFFICIENTS: case FSL_QUADRATIC_SPLINE_COEFFICIENTS: case FSL_DCT_COEFFICIENTS: // Coefficients generated by FSL application (e.g. fnirt) read_orig_volume4D(vol,fname); // Re-read coefficients "raw" _aff = vol.sform_mat(); // Affine part of transform _aor = RelativeWarps; // Relative warps _coef_rep = read_coef_file(vol,verbose); if (vol.intent_code() == FSL_CUBIC_SPLINE_COEFFICIENTS || vol.intent_code() == FSL_QUADRATIC_SPLINE_COEFFICIENTS) _type = FnirtSplineDispType; else if (vol.intent_code() == FSL_DCT_COEFFICIENTS) _type = FnirtDCTDispType; break; case FSL_FNIRT_DISPLACEMENT_FIELD: // Field generated by fnirt _type = FnirtFieldDispType; _aor = RelativeWarps; // Relative warps _aff = estimate_affine_part(vol); // Get (possible) affine component for (int i=0; i<3; i++) remove_affine_part(_aff,i,vol[i]); // Siphon off the affine component _vol_rep = shared_ptr >(new volume4D(vol)); // Represent as volume break; default: // Field generated by "unknown" application _type = UnknownDispType; _aor =wt; // Trust the user _vol_rep = shared_ptr >(new volume4D(vol)); // Represent as volume _aff = IdentityMatrix(4); // Affine part already included // Convert into relative warps (if neccessary) if (wt==AbsoluteWarps) convertwarp_abs2rel(*_vol_rep); else if (wt==UnknownWarps) { if (verbose) cout << "Automatically determining absolute/relative warp convention" << endl; float stddev0 = (*_vol_rep)[0].stddev()+(*_vol_rep)[1].stddev()+(*_vol_rep)[2].stddev(); convertwarp_abs2rel(*_vol_rep); float stddev1 = (*_vol_rep)[0].stddev()+(*_vol_rep)[1].stddev()+(*_vol_rep)[2].stddev(); // assume that relative warp always has less stddev if (stddev0>stddev1) { // the initial one (greater stddev) was absolute if (verbose) cout << "Assuming warps was absolute" << endl; } else { // the initial one was relative if (verbose) cout << "Assuming warps was relative" << endl; convertwarp_rel2abs(*_vol_rep); // Restore to relative, which is what we want } // By now it will be in a relative form, which allows us to estimate the affine component. _aff = estimate_affine_part(*_vol_rep); for (int i=0; i<3; i++) remove_affine_part(_aff,i,(*_vol_rep)[i]); } break; } } vector > FnirtFileReader::read_coef_file(const volume4D& vcoef, bool verbose) const { // Collect info that we need to create the fields Matrix qform = vcoef.qform_mat(); if (verbose) cout << "qform = " << qform << endl; vector sz(3,0); vector vxs(3,0.0); for (int i=0; i<3; i++) { sz[i] = static_cast(qform(i+1,4)); vxs[i] = static_cast(vcoef.intent_param(i+1)); } if (verbose) cout << "Matrix size: " << sz[0] << " " << sz[1] << " " << sz[2] << endl; if (verbose) cout << "Voxel size: " << vxs[0] << " " << vxs[1] << " " << vxs[2] << endl; vector > fields(3); if (vcoef.intent_code() == FSL_CUBIC_SPLINE_COEFFICIENTS || vcoef.intent_code() == FSL_QUADRATIC_SPLINE_COEFFICIENTS) { // Interpret as spline coefficients if (verbose) cout << "Interpreting file as spline coefficients" << endl; vector ksp(3,0); unsigned int order = 3; if (vcoef.intent_code() == FSL_QUADRATIC_SPLINE_COEFFICIENTS) order = 2; ksp[0] = static_cast(vcoef.xdim() + 0.5); ksp[1] = static_cast(vcoef.ydim() + 0.5); ksp[2] = static_cast(vcoef.zdim() + 0.5); if (verbose) cout << "Knot-spacing: " << ksp[0] << " " << ksp[1] << " " << ksp[2] << endl; if (verbose) cout << "Size of coefficient matrix: " << vcoef.xsize() << " " << vcoef.ysize() << " " << vcoef.zsize() << endl; for (int i=0; i<3; i++) { fields[i] = shared_ptr(new splinefield(sz,vxs,ksp,order)); } // Sanity check if (fields[0]->CoefSz_x() != static_cast(vcoef.xsize()) || fields[0]->CoefSz_y() != static_cast(vcoef.ysize()) || fields[0]->CoefSz_z() != static_cast(vcoef.zsize())) { throw FnirtFileReaderException("read_coef_file: Coefficient file not self consistent"); } } else if (vcoef.intent_code() == FSL_DCT_COEFFICIENTS) { // Interpret as DCT coefficients if (verbose) cout << "Interpreting file as DCT coefficients" << endl; std::vector order(3); order[0] = static_cast(vcoef.xsize()); order[1] = static_cast(vcoef.ysize()); order[2] = static_cast(vcoef.zsize()); if (verbose) cout << "Size of coefficient matrix: " << vcoef.xsize() << " " << vcoef.ysize() << " " << vcoef.zsize() << endl; for (int i=0; i<3; i++) { fields[i] = shared_ptr(new dctfield(sz,vxs,order)); } } // Set the coefficients from the file for (int i=0; i<3; i++) { fields[i]->SetCoef(vcoef[i].vec()); } // Return vector of fields return(fields); } /* void FnirtFileReader::add_affine_part(Matrix aff, unsigned int indx, volume& warps) const { if (indx > 2) throw FnirtFileReaderException("add_affine_part: indx out of range"); if ((aff-IdentityMatrix(4)).MaximumAbsoluteValue() > 1e-6) { Matrix M = (aff.i() - IdentityMatrix(4)) * warps.sampling_mat(); ColumnVector mr(4); for (unsigned int i=1; i<=4; i++) mr(i) = M(indx+1,i); ColumnVector xv(4); int zs = warps.zsize(), ys = warps.ysize(), xs = warps.xsize(); xv(4) = 1.0; for (int z=0; z