Function-Structure Integration in FreeSurfer

Outline

- Function-Structure Integration
- Function-Structure Registration in FreeSurfer
- fMRI Analysis
 - Preprocessing
 - First-Level Analysis
 - Higher-Level (Group) Analysis
 - Correction for Multiple Comparisons
 - Data Hierarchies
- FreeSurfer Functional Analysis STream (FSFAST)
- Tutorial
- Demos

Function-Structure Integration

- Viewing Functional Maps on Structural – Volume, Surface
- Inter-Subject Registration
- Region of Interest (ROI) Analysis
- Retinotopy
- Structural-Functional Covariates
 - Eg, use thickness at a voxels as covariate
 - Voxel-wise design matrices

FreeSurfer Registration

FreeSurfer Subject-Specific

- Volumes
- Surfaces
- Thickness
- ROIs

Your Data/Software

- fMRI (FSL, SPM,...)
- DTI
- PET
- EEG/MEG ...

Registration Matrix

- Affine 4x4
- As many as 12 DOF (usually 6)
- Text file

Registration

FreeSurfer Anatomical

Note: Registering the template functional volume to the anatomical volume is sufficient to register the template to the surface.

Template Functional

Manual Registration

- tkregister2
- •Visually inspect registration
- Manually edit registration (6 DOF)
- Cf Manual Talairach registration

tkregister2 --help

Tips

- Rigid = 6 DOF = No stretching
- Use CSF to get a sense of where the folds are
- Avoid using B0 distortion regions
- Avoid using ventricles
- Warning about "edge" of the brain
- Same Subject, Left-Right Flips

Command-line Tools

Automatic Registration:

- fslregister help
- spmregister –help
 - FreeSurfer Scripts
- reg-feat2anat -help -

Manual Registration:

• tkregister2 --help

Transformations:

- mri_vol2surf --help
- mri_vol2vol --help
- mri_label2vol --help
- mri_surf2vol --help

Sampling on the Surface

- White/Gray
- Pial
- Half Way
- Average

Projection Fraction --projfrac 0.5

Sampling on the Surface

fMRI Analysis Pipeline Overview

fMRI Preprocessing Stages

- Motion Correction
- Slice-timing Correction (Interleaved vs Seq)
- B0 Distortion Correction
- Intensity Normalization: 4D or 3D?
- Masking zeroing non-brain
- Resampling to Common Space
- Spatial Smoothing 3D or 2D?
- <u>Temporal Filtering is NOT Preprocessing!</u>

Reasons for Smoothing

- Improve CNR/SNR
- Reduce interpolation effects
- Make statistics more valid (GRF)
- Improve inter-subject registration
- Improve function-surface registration

Effects of Smoothing

No Smoothing FWHM = 5mm

Effects of Smoothing

First Level Design and Analysis

- First-Level = First Standard Deviation
- First-Level Design
 - Event Definition and HRF Specification
 - Nuisance Regressors
 - Temporal Filtering
 - Temporal Whitening
- First-Level Contrasts
 - Univariate (t) Pass up to next level
 - Multivariate (F)
- Analysis (Voxel-wise = "Massively Univariate")
 - Contrasts of HRF Amplitudes
 - Variances of the Contrasts

First Level Design: HRF Shapes

Stimulus Schedule/FSFAST Paradigm File

- Codes Stimulus Schedule (and Weight)
- Four Columns
 - 1. Onset Time (Since Acq of 1st Saved Volume)
 - 2. Stimulus Code (0, 1, 2, 3...)
 - 3. Stumulus Duration
 - 4. Stimulus Weight (default is 1)
 - 5. Any other columns ignored
- Simple Text File
- Code 0 Always Fixation/NULL

0.000	0	15	1	Fixation
15.000	1	15	1	Task-Odd
30.000	0	15	1	Fixation
45.000	2	15	1	Task-Even
60.000	0	15	1	Fixation
75.000	1	15	1	Task-Odd
90.000	0	15	1	Fixation
105.000	2	15	1	Task-Even
120.000	0	15	1	Fixation
135.000	1	15	1	Task-Odd
150.000	0	15	1	Fixation
165.000	2	15	1	Task-Even
180.000	0	15	1	Fixation
195.000	1	15	1	Task-Odd
210.000	0	15	1	Fixation
225.000	2	15	1	Task-Even
240.000	0	15	1	Fixation

First-Level Design Matrix

FIR

- Task convolved with HRF
- Polynomial (0-2) Nuisance Regressors
- MC Parameters reduced from 6 to 3

Higher-Level (Group) Analysis

- Higher-Level Design
 - Groups and covriates
 - Contrasts
- Analysis Method
 - Random Effects (RFx, OLS = ordinary least squares)
 - Weighted Random Effects (WRFx, WLS=weighted least squares)
 - Mixed Effects
 - Fixed Effects (FFx)
- Correction for Multiple Comparisons
 - Clustering (GRF, Monte Carlo, Permutation)

Group Effect Models

- Random Effects (RFx, OLS; WRFx, WLS)
 - Does effect exist in the general population that my subjects were drawn from?
 - Weighted weight each subject by 1/First Level Noise
- <u>Fixed Effects</u> (FFx) Does effect exist within the group of subjects that I am studying? Like having one subject scanned multiple times.
- <u>Mixed Effects</u> use First Level (within-subject) Noise AND between-subject noise to do better weighting.

One-Sample Group Mean (OSGM)

- No groups, No Covariates
- Does average = 0?
- One-sample t-test
- Group Design Matrix: Vector of All 1s

FS-FAST Directory Hierarchy

Use unpacksdcmdir to import Session in Siemens dicom to FS-FAST.

FS-FAST Tutorial

• Data - fBIRN

- 5 Subjects
- 4 Runs Each (TR=3, 85TP)
- Sensory Motor Task
- 15 sec Blocks
- 9 OFF
- 8 ON
- Code Odd and Even Separately
- Test Odd vs Even

fBIRN Phase I Sensory-Motor Task Schedule

surfer.nmr.mgh.harvard.edu/fswiki/FsFastTutorial

FS-FAST Tutorial Exercises

- Data setup
 - "Import" in to hierarchy
 - Create paradigm files
 - Link to FreeSurfer Anatomical Analysis
- Viewing Functional Results in TkMedit/TkSurfer
- Preprocessing MC and Smoothing
- Registration automated and manual
- First Level
 - Design and Contrasts: Gamma, Finite Impulse Response (FIR)
 - First Level Analysis
 - Visualization volume and surface
- Group Level Analysis One-Sample Group Mean (OSGM)
 - QA
 - RFx, WRFx, FFx
 - Volume (Talairach) and Surface

FS-FAST Tutorial Exercises

- Four main directories at various levels of processing in \$FSFTUTDIR:
 - 1. <u>fb1-raw</u> raw data, nifti format, unorganized
 - 2. <u>fb1-raw-study</u> raw data organized in FSFAST hierarchy
 - 3. <u>fb1-preproc-study</u> preprocessed data
 - 4. <u>fb1-analysis-study</u> fully analyzed
 - 1. First-level Analyses
 - 2. Group Analyses in Tal and Surf
- You don't necessarily need to run any processing can just run visualization.

Start Terminal firefox& surfer.nmr.mgh.harvard.edu/fswiki/FsFastTutorial