Index
Contents
Name
mri_robust_template - construct an unbiased robust template for longitudinal volumes
Synopsis
mri_robust_template --mov <tp1.mgz> <tp2.mgz> ... --template <template.mgz> --satit [options]
Please Cite This
Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis
M. Reuter, N.J. Schmansky, H.D. Rosas, B. Fischl.
NeuroImage 61(4):1402-1418, 2012.
Description
This program constructs an unbiased robust template for longitudinal volumes (within modality, 6-7 DOF). It uses an iterative method to construct a mean/median volume and the robust rigid registration of all input images to the current mean/median.
It is used for the Motion Correction step in recon-all and for creating a within-subject template in the longitudinal stream (-base) in FreeSurfer.
Important Note: For best performance the input images should all have the same intensity level! Good images are, for example, the T1.mgz and norm.mgz from the FreeSurfer stream.
Arguments
Required Flagged Arguments
-- mov <tp1.mgz> <tp2.mgz> ... |
input movable volumes to be aligned to common mean/median template |
-- template <template.mgz> |
output template volume (final mean/median image) |
- One of the following is required for sensitivity:
-- sat <real> |
set outlier sensitivity manually (e.g. '--sat 4.685' ). Higher values mean less sensitivity. |
-- satit |
auto-detect good sensitivity (recommended for head or full brain scans) |
Optional Flagged Arguments
-- lta <tp1.lta> <tp2.lta> ... |
output xforms to template (for each input) |
-- mapmov <aligned1.mgz> ... |
output images: map and resample each input to template |
-- weights <weights1.mgz> ... |
output weights (outliers) in target space |
-- average <#> |
construct template from: 0 Mean, 1 Median (default) |
-- inittp <#> |
use TP# for spacial init (default random), 0: no init |
-- fixtp |
map everthing to init TP# (init TP is not resampled) |
-- iscale |
allow also intensity scaling (default off) |
-- iscalein <is1.txt> <is2.txt> ... |
use initial intensity scales |
-- iscaleout <is1.txt> <is2.txt> ... |
output final intensity scales (will activate --iscale) |
-- ixforms <t1.lta> <t2.lta> ... |
use initial transforms (lta) on source ('id'=identity) |
-- vox2vox |
output VOX2VOX lta file (default is RAS2RAS) |
-- affine |
compute 12 DOF registration (default is 6 DOF) |
-- leastsquares |
use least squares instead of robust M-estimator (for testing only) |
-- noit |
do not iterate, just create first template |
-- maxit <#> |
iterate max # times (if #tp>2 default 6, else 5 for 2tp reg.) |
-- highit <#> |
iterate max # times on highest resolution (default 5) |
-- epsit <real> |
stop iterations when all tp transform updates fall below <real> (if #tp>2 default 0.03, else 0.01 for 2tp reg.) |
-- subsample <#> |
subsample if dim > # on all axes (default no subs.) |
-- floattype |
convert images to float internally (default: keep input type) |
-- finalnearest |
use nearest neighbor in final interpolation when creating average. This is useful, e.g., when -noit and --ixforms are specified and brainmasks are mapped. |
-- doubleprec |
double precision (instead of float) internally (large memory usage!!!) |
-- debug |
show debug output (default no debug output) |
Examples
Example 1
mri_robust_template --mov tp1.mgz tp2.mgz tp3.mgz --template mean.mgz --lta tp1.lta tp2.lta tp3.lta --mapmov tp1tomean.mgz tp2tomean.mgz tp3tomean.mgz --average 0 --iscale --satit
Constructs a mean (--average 0) template from tp1,tp2 and tp3 and outputs the mean.mgz, the corresponding transforms (tp?.lta) and aligned images (tp?tomean.mgz). Intensity scaling is allowed, the saturation/sensitivity for outliers is automatically computed (only possible for full head or full brain images).
View results:
tkmedit -f mean.mgz -aux tp1tomean.mgz
Example 2
mri_robust_template --mov 001.mgz 002.mgz --average 1 --template rawavg.mgz --satit --inittp 1 --fixtp --noit --iscale --subsample 200
Is used in the recon-all stream for motion correction of several (here two: 001.mgz and 002.mgz) inputs. In this case all follow-ups are registered to the first input (as specified with --inittp 1 --fixtp --noit) and the rawavg.mgz is output as the median image (--average 1).
Bugs
None (of course)
See Also
Links
References
Please cite this:
Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis
M. Reuter, N.J. Schmansky, H.D. Rosas, B. Fischl.
NeuroImage 61(4):1402-1418, 2012.
The robust registration is based on this:
Highly Accurate Inverse Consistent Registration: A Robust Approach,
M. Reuter, H.D. Rosas, B. Fischl.
NeuroImage 53(4), pp. 1181-1196, 2010.
Related Publication:
Avoiding Asymmetry-Induced Bias in Longitudinal Image Processing,
M. Reuter, B. Fischl.
NeuroImage 57(1), pp. 19-21, 2011.
Also see FreeSurferMethodsCitation.
Reporting Bugs
Report bugs to <freesurfer@nmr.mgh.harvard.edu>