|
Size: 967
Comment:
|
Size: 2889
Comment: removed -? option
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 1: | Line 1: |
| ## Note: This page was created with the CommandTemplate ## ## If you're modifying this page please take a look at the ## latest version of CommandTemplate to ensure that you're ## using the latest version of the CommandTemplate ## ## See HelpOnCommandTemplate for description of formatting |
|
| Line 13: | Line 5: |
| Line 15: | Line 6: |
| mris_ca_label | '''mris_ca_label''' - Automatically assigns a neuroanatomical label to each location on a cortical surface model. This procedure incorporates both geometric information derived from the cortical model (sulcus and curvature), and neuroanatomical convention, as found in a training set (see ["mris_ca_train"]). |
| Line 18: | Line 9: |
| mris_ca_label <subject> <hemi> <canon surf> <classifier> <output file> | mris_ca_label [options] <subject> <hemi> <canonsurf> <classifier> <outputfile> |
| Line 23: | Line 14: |
|| subject || subject || || hemi || hemisphere || || canon surf || || classifier || || output file|| |
|| [options] || -sdir, -orig, -long, -novar, -nbrs, -f, -v, -w, -r, --help, --version || || <subject> || subject id || || <hemi> || hemisphere: rh or lh || || <canonsurf> || canonical surface file || || <classifier> || specify classifier array input file || || <outputfile> || annotated surface output file || |
| Line 31: | Line 22: |
| subject hemi canonsurf classifier outputfile | |
| Line 34: | Line 25: |
| || -sdir <subject dir> || specify a subjects directory (default=$SUBJECTS_DIR) || || -orig <filename> || specify filename of original surface (default=smoothwm) || || -long || refines the initial labeling read-in from -r (default: disabled) || || -r <filename> || file containing precomputed parcellation || || -novar || sets all covariance matrices to the identify (default: disabled) || || -nbrs <number> || neighborhood size (default=2) || || -f <number> || applies mode filter <number> times before writing output (default=10) || || -t <filename> || specify parcellation table input file (default: none) || || -v <number> || diagnostic level (default=0) || || -w <number> <filename> || writes-out snapshots of gibbs process every <number> iterations to <filename> (default=disabled) || || --help || print help info || || --version || print version info || |
|
| Line 35: | Line 38: |
| Line 37: | Line 39: |
| || outputfile: || labeled cortical surface model || | |
| Line 38: | Line 41: |
= Description = = Examples = |
= Example = {{{ mris_ca_label \ -orig white \ -novar \ -t $SUBJECTS_DIR/scripts/colortable_final.txt \ my_subject \ lh \ sphere.reg \ $SUBJECTS_DIR/average/lh.rahul.gcs \ $SUBJECTS_DIR/my_subject/label/lh.raparc.annot }}} In this example, mris_ca_label take sphere.reg as the canonical surface input file, lh.rahul.gcs as the classifier array input file, and writes the annotated surface info to lh.raparc.annot. The file colortable_final.txt is embedded into the output file, so that tksurfer (and other utilities) can read it in. |
| Line 45: | Line 56: |
| None | none |
| Line 48: | Line 59: |
| ["mris_sample_parc"], ["mris_ca_train"] | |
| Line 51: | Line 62: |
| FreeSurfer, FsFast = Methods Description = |
CorticalParcellation, FreeSurfer, FsFast |
| Line 56: | Line 65: |
| [https://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl04-parcellation.pdf Automatically Parcellating the Human Cerebral Cortex], Fischl et al., (2004). Cerebral Cortex, 14:11-22. | |
| Line 61: | Line 71: |
| BruceFischl |
Navigation(children) Index TableOfContents
Name
mris_ca_label - Automatically assigns a neuroanatomical label to each location on a cortical surface model. This procedure incorporates both geometric information derived from the cortical model (sulcus and curvature), and neuroanatomical convention, as found in a training set (see ["mris_ca_train"]).
Synopsis
mris_ca_label [options] <subject> <hemi> <canonsurf> <classifier> <outputfile>
Arguments
Positional Arguments
[options] |
-sdir, -orig, -long, -novar, -nbrs, -f, -v, -w, -r, --help, --version |
<subject> |
subject id |
<hemi> |
hemisphere: rh or lh |
<canonsurf> |
canonical surface file |
<classifier> |
specify classifier array input file |
<outputfile> |
annotated surface output file |
Required Flagged Arguments
subject hemi canonsurf classifier outputfile
Optional Flagged Arguments
-sdir <subject dir> |
specify a subjects directory (default=$SUBJECTS_DIR) |
-orig <filename> |
specify filename of original surface (default=smoothwm) |
-long |
refines the initial labeling read-in from -r (default: disabled) |
-r <filename> |
file containing precomputed parcellation |
-novar |
sets all covariance matrices to the identify (default: disabled) |
-nbrs <number> |
neighborhood size (default=2) |
-f <number> |
applies mode filter <number> times before writing output (default=10) |
-t <filename> |
specify parcellation table input file (default: none) |
-v <number> |
diagnostic level (default=0) |
-w <number> <filename> |
writes-out snapshots of gibbs process every <number> iterations to <filename> (default=disabled) |
--help |
print help info |
--version |
print version info |
Outputs
outputfile: |
labeled cortical surface model |
Example
mris_ca_label \ -orig white \ -novar \ -t $SUBJECTS_DIR/scripts/colortable_final.txt \ my_subject \ lh \ sphere.reg \ $SUBJECTS_DIR/average/lh.rahul.gcs \ $SUBJECTS_DIR/my_subject/label/lh.raparc.annot
In this example, mris_ca_label take sphere.reg as the canonical surface input file, lh.rahul.gcs as the classifier array input file, and writes the annotated surface info to lh.raparc.annot. The file colortable_final.txt is embedded into the output file, so that tksurfer (and other utilities) can read it in.
Bugs
none
See Also
["mris_sample_parc"], ["mris_ca_train"]
Links
CorticalParcellation, FreeSurfer, FsFast
References
[https://surfer.nmr.mgh.harvard.edu/ftp/articles/fischl04-parcellation.pdf Automatically Parcellating the Human Cerebral Cortex], Fischl et al., (2004). Cerebral Cortex, 14:11-22.
Reporting Bugs
Report bugs to <analysis-bugs@nmr.mgh.harvard.edu>
